首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Ce0.6Zr0.4O2 solid solutions were synthesized by co-precipitation, sol–gel like method, solution combustion and surfactant-assistant approaches, respectively. The catalytic properties of bulk and γ-Al2O3 supported Ce0.6Zr0.4O2 solid solutions were studied for the oxidation of soluble organic fractions (SOF) from diesel engines by TG-DTA method. The physicochemical properties were characterized by XRD, BET surface area and pore distribution, SEM, TEM, and particle size distribution techniques. XRD and TEM results show that a Ce0.6Zr0.4O2 solid solution was formed for samples as-prepared and heat-treated at 900 °C for 2 h in air. The co-precipitation derived Ce0.6Zr0.4O2 has as high BET surface area as 153.71 m2/g by controlling preparation conditions. Notable is that the surface area and particle size for fresh Ce0.6Zr0.4O2 ignited at 350 °C decreased little after a thermal treatment in air at 900 °C for 2 h. Furthermore, its bulk density is lowest. The commercial engine oil (SJ5W/40) for FAW-VOLKSWAGEN, which was used by Bora 1.9 TDI diesel cars in China market was substituted for SOF. The catalytic activity was evaluated by normalized peak areas and extrapolated onset temperatures of DTA curves. A computer program was developed by direct non-linear regression model for simulation of TG/DTG curves to determine the thermal processes and kinetic parameters. It is found that lube evaporation/decomposition and thermal decomposition (pyrolysis) were observed under a nitrogen atmosphere. Lube evaporation fractions were inhibited by Ce0.6Zr0.4O2 and γ-Al2O3. While under an air atmosphere, namely, in the process of lube oxidation (combustion), evaporation/decomposition, low-temperature oxidation and high-temperature oxidation were distinguished. Ce0.6Zr0.4O2 solid solutions are active catalysts for lube oxidation, in which the sample prepared by solution combustion has the highest activity, mainly due to the maintenance of the surface area and particle size upon sintering and its lowest bulk density. However, γ-Al2O3 is more like a support. There exists synergism between Ce0.6Zr0.4O2 and γ-Al2O3: γ-Al2O3 adsorbs lube retaining it within its pore structure, whereas, Ce0.6Zr0.4O2 solid solutions initiate oxidation reactions when light-off temperatures reach. The application of CeO2-ZrO2 solid solution prepared by solution combustion at lower temperature would be promising in diesel oxidation catalysts.  相似文献   

2.
Nanoparticles of CexZr1−xO2 (x = 0.75, 0.62) were prepared by the oxidation-coprecipitation method using H2O2 as an oxidant, and characterized by N2 adsorption, XRD and H2-TPR. CexZr1−xO2 prepared had single fluorite cubic structure, good thermal stability and reduction property. With the increasing of Ce/Zr ratio, the surface area of CexZr1−xO2 increased, but thermal stability of CexZr1−xO2 decreased. The surface area of Ce0.62Zr0.38O2 was 41.2 m2/g after calcination in air at 900 °C for 6 h. TPR results showed the formation of solid solution promoted the reduction of CeO2, and the reduction properties of CexZr1−xO2 were enhanced by the cycle of TPR-reoxidation. The Pd-only three-way catalysts (TWC) were prepared by the impregnation method, in which Ce0.75Zr0.25O2 was used as the active washcoat and Pd loading was 0.7 g/L. In the test of Air/Fuel, the conversion of C3H8 was close to 100% and NO was completely converted at λ < 1.025. The high conversion of C3H8 was induced by the steam reform and dissociation adsorption reaction of C3H8. Pd-only catalyst using Ce0.75Zr0.25O2 as active washcoat showed high light off activity, the reaction temperatures (T50) of 50% conversion of CO, C3H8 and NO were 180, 200 and 205 °C, respectively. However, the conversions of C3H8 and NO showed oscillation with continuously increasing the reaction temperature. The presence of La2O3 in washcoat decreased the light off activity and suppressed the oscillation of C3H8 and NO conversion. After being aged at 900 °C for 4 h, the operation windows of catalysts shifted slightly to rich burn. The presence of La2O3 in active washcoat can enhance the thermal stability of catalyst significantly.  相似文献   

3.
The CexZr1−xO2 solid solution was used as a support of a palladium catalyst for methanol decomposition to synthesis gas at low temperature. All Pd-containing catalysts tested in this study showed high selectivity to synthesis gas (over 96%). The Pd supported on the composite oxide with a Ce/Zr molar ratio of 4/1 exhibited the highest activity. Pd/Ce0.8Zr0.2O2 (17 wt.%) (cop) (prepared by coprecipitation method) showed a conversion of 51.2% for the methanol decomposition at 473 K, which was higher than those over 17 wt.% Pd/CeO2 (cop) (40.7%) and 17 wt.% Pd/ZrO2 (cop) (24.3%) at 473 K. The 17 wt.% Pd/Ce0.8Zr0.2O2 (cop) catalyst showed a higher BET surface area and smaller Pd particles than those of 17 wt.% Pd/CeO2 (cop). Moreover, a more active Pdσ+ state could be maintained by Zr4+ ion modification due to promotion of the oxygen mobility and enhancement of the reductibility and increase in the acid sites of the CeO2 support. The 17 wt.% Pd/Ce0.8Zr0.2O2 (cop) catalyst showed a much higher conversion (51.2%) than that over 17 wt.% Pd/Ce0.8Zr0.2O2 (imp) (prepared by impregnation method) (17.2%) at 473 K. This is due to the 17 wt.% Pd/Ce0.8Zr0.2O2 (cop) possessing many small Pd particles. The 17 wt.% Pd/Ce0.8Zr0.2O2 (cop) catalyst showed an initial conversion of 51.2% at 473 K but the conversion decreased to 43.1% after 24 h on stream. This deactivation was attributed to carbonaceous deposit on the catalyst surface. The amounts of coke on the 17 wt.% Pd/Ce0.8Zr0.2O2 (cop) catalyst were 0.9 wt.% after 24 h on stream at 473 K and 2.1 wt.% after 1 h on stream at 523 K.  相似文献   

4.
A total of 10 noble metal (Rh, Pt, Pd, Ru and Ir) catalysts, either supported on CeO2 or Ce0.63Zr0.37O2, were prepared. Catalysts were fully characterized using XRD, N2 adsorption at −196 °C, TEM and H2 chemisorption. Oxygen storage processes were carefully investigated. The influence of temperature was checked and a key role of oxygen diffusion was further demonstrated. A review of the reactions involved in the CO transient oxidation reaction is finally proposed.  相似文献   

5.
Pt/ZrO2 and Pt/Ce0.14Zr0.86O2 catalysts containing 0.5 and 1.5 wt.% Pt were studied in order to evaluate the effect of the support reducibility and metal dispersion on the catalyst stability for the partial oxidation and the combined partial oxidation and CO2 reforming of methane. The Pt/Ce0.14Zr0.86O2 catalysts proved to be more active, stable and selective than Pt/ZrO2 catalysts during the partial oxidation reaction. No increase in deactivation was observed when the CH4:O2 feed ratio was increased from 2:1 to 4:1. In addition, no water formation was observed at the high CH4:O2 ratios. The activity of the catalyst is dependent upon both the dispersion and the ability of the catalyst to resist carbon deposition.

The addition of CO2 resulted in a decrease in the methane conversion and a decrease in the H2/CO ratio for the Ce0.14Zr0.86O2 and ZrO2 supported catalysts. Small increases in the temperature of the bed have been recorded during the partial oxidation reaction. However, within a few minutes the temperature stabilizes below the furnace temperature providing indirect evidence for the combined combustion and reforming mechanisms previously proposed. The 1.5 wt.% Pt/CeZrO2 catalyst shows promise for the autothermal reforming reaction based on the stability during transient operation.  相似文献   


6.
This study focuses on the direct sulfur recovery process (DSRP), in which SO2 can be directly converted into elemental sulfur using a variety of reducing agents over Ce1−xZrxO2 catalysts. Ce1−xZrxO2 catalysts (where x = 0.2, 0.5, and 0.8) were prepared by a citric complexation method. The experimental conditions used for SO2 reduction were as follow: the space velocity (GHSV) was 30,000 ml/g-cat h and the ratio of [CO (or H2, H2 + CO)]/[SO2] was 2.0. It was found that the catalyst and reducing agent providing the best performance were the Ce0.5Zr0.5O2 catalyst and CO, respectively. In this case, the SO2 conversion was about 92% and the sulfur yield was about 90% at 550 °C. Also, a higher efficiency of SO2 removal and elemental sulfur recovery was achieved in the reduction of SO2 with CO as a reducing agent than that with H2. In the reduction of SO2 by H2 over the Ce0.5Zr0.5O2 catalyst, SO2 conversion and sulfur yield were about 92.7% and 73%, respectively, at 800 °C. Also, the reduction of SO2 using synthetic gas with various [CO]/[H2] molar ratios over the Ce0.5Zr0.5O2 catalyst was performed, in order to investigate the possibility of using coal-derived gas as a reducing agent in the DSRP. It was found that the reactivity of the SO2 reduction using the synthetic gas with various [CO]/[H2] molar ratios was increased with increasing CO content of the synthetic gas. Therefore, it was found that the Ce1−xZrxO2 catalysts are applicable to the DSRP using coal-derived gas, which contains a larger percentage of CO than H2.  相似文献   

7.
This study has been undertaken to investigate the efficiency of ceria, zirconia, and CexZr1−xO2 mixed oxides as catalysts for the vapour-phase destruction in air of single model VOCs (n-hexane, 1,2-dichloroethane and trichloroethylene) and non-chlorinated VOC/chlorinated VOC binary mixtures. Considering all catalyst compositions examined for the individual destruction of these compounds, activity for complete oxidation decreased in the following order: n-hexane < 1,2-dichloroethane < trichloroethylene. The compositions with the best performance for chlorinated VOCs abatement (Ce0.5Zr0.5O2 and Ce0.15Zr0.85O2) were different than that with the best performance for n-hexane oxidation (CeO2). Concerning chlorinated VOCs conversion, it was observed that notable improvements in catalyst activity of CeO2 could be achieved through structural doping with Zr ions. Mixed oxides exhibited promoted redox and acid properties, which resulted catalytically relevant for the oxidation of 1,2-dichloroethane and trichloroethylene. In contrast, the combustion of n-hexane was essentially controlled by surface oxygen species, which were more abundant on CeO2. Attainment of high n-hexane conversions with CeO2 was also attributed in part to the hydrophobicity of the support and the reduced interaction with carbon dioxide.

Significant ‘mixture effects’ on both activity and selectivity were noticed when a given chlorinated feed was decomposed in the presence of n-hexane. On one hand, each VOC decreased the reactivity of the other relative to that of the pure compound resulting in higher operating temperatures to achieve adequate destruction. Competitive adsorption played an important role in the reciprocal inhibition effects detected with all catalysts. On the other hand, the selectivity to HCl was noticeably enhanced when n-hexane was co-fed, probably due to the increased presence of water generated as an oxidation product.  相似文献   


8.
Pd-loaded Ce0.6Zr0.4O2 solid solutions supported on Al2O3 are investigated as catalysts for the reduction of NO by CO. The attention is focused on the role of the Ce0.6Zr0.4O2 and of the Pd dispersion on the catalytic activity. The system shows a very high activity below 500 K, which is almost independent on the Pd dispersion. The high activity is attributed to a promoting effect of the Ce0.6Zr0.4O2 on the NO conversion. Investigation of the influence of high temperature treatments disclosed a thermal stabilisation of both Ce0.6Zr0.4O2 and Al2O3 in the Ce0.6Zr0.4O2/Al2O3 system.  相似文献   

9.
A series of the Ce1−xCuxO2−x/Al2O3/FeCrAl catalysts (x = 0–1) were prepared. The structure of the catalysts was characterized using XRD, SEM and H2-TPR. The catalytic activity of the catalysts for the combustion of methane was evaluated. The results indicated that in the Ce1−xCuxO2−x/Al2O3/FeCrAl catalysts the surface phase structure were the Ce1−xCuxO2−x solid solution, -Al2O3 and γ-Al2O3. The surface particle shape and size were different with the variety of the molar ratio of Ce to Cu in the Ce1−xCuxO2−x solid solution. The Cu component of the Ce1−xCuxO2−x/Al2O3/FeCrAl catalysts played an important role to the catalytic activity for the methane combustion. There were the stronger interaction among the Ce1−xCuxO2−x solid solution and the Al2O3 washcoats and the FeCrAl support.  相似文献   

10.
Activities of a series of metals (Pt, Pd, Rh, Cu, Mn) supported on TiO2 were investigated for the catalytic oxidation of formaldehyde. Among them, Pt/TiO2 was found to be the most promising catalyst. Nitrogen adsorption, hydrogen chemisorption, X-ray diffraction (XRD), transmission electron microscopy (TEM) and temperature programmed reduction (TPR) by H2 were used to characterize the platinum catalysts. Using Ce0.8Zr0.2O2, Ce0.2Zr0.8O2, SiO2 as supports instead of TiO2, the activity sequence of 0.6 wt.% platinum with respect to the supports is TiO2 > SiO2 > Ce0.8Zr0.2O2 > Ce0.2Zr0.8O2, and this appears to be correlated with the dispersion of platinum on supports rather than the specific surface areas of the catalysts. Platinum loading on TiO2 has a great effect on the catalytic activity, and 0.6 wt.% Pt/TiO2 catalyst was observed to be the most active, which could be attributed to the well-dispersed platinum surface phase. The reduction temperature greatly affects the particle size and, consequently, the catalytic activity. The smaller particle size of platinum, due to its high dispersion on support, has a positive effect on catalytic performance. Increasing formaldehyde concentration and space velocity exhibits an inhibiting effect on the catalytic activity.  相似文献   

11.
H. He  H. X. Dai  C. T. Au 《Catalysis Today》2004,90(3-4):245-materials
Defective structures, surface textures, oxygen mobility, oxygen storage capacity (OSC), and redox properties of RE0.6Zr0.4O2 and of RE0.6Zr0.4−xYxO2 (RE=Ce, Pr; x=0, 0.05) solid solutions have been investigated using X-ray diffraction (XRD), temperature-programmed desorption (TPD), temperature-programmed reduction (TPR), O2−H2 and O2−CO titration, 18O/16O isotope exchange, CO pulsing reaction, and X-ray photoelectron spectroscopy (XPS) techniques. The effects of doping noble metal onto RE0.6Zr0.4−xYxO2 on oxygen mobility and surface oxygen activities have also been studied. Based on the experimental outcomes, we conclude that: (i) a Pr-based solid solution has better redox behavior than a Ce-based one; (ii) incorporation of yttrium ions in the lattices of CZ and PZ solid solutions could result in an enhancement in oxygen vacancy concentration, Ce4+/Ce3+ and Pr4+/Pr3+ redox properties, lattice oxygen mobility, and oxygen storage capacity; and (iii) doping the noble metal (Rh, Pt, and Pd) onto RE-based solid solution has positive effect on the properties concerned in this work.  相似文献   

12.
Attention has been increasingly paid to the partial oxidation of lower alkanes to synthesis gas, due to its intrinsic energy saving process. We studied the partial oxidation of ethane (POE) on Co loaded on various supports. The POE performance varied as follows: Y2O3, CeO2, ZrO2, La2O3  SiO2, Al2O3, TiO2 > MgO. Comparing Y2O3 and CeO2, the carbon deposition during the POE was negligible on CeO2 and therefore CeO2 was the most preferable support. By changing space velocity and O2 partial pressure, reaction mechanism of POE was studied and it was revealed that two-step mechanism was prevailing; combustion of ethane to H2O and CO2 and subsequent reforming of ethane with H2O and CO2 to synthesis gas. Co/CeO2 catalyst exhibited high and stable catalytic activity for 10 h; high ethane conversion of 18% (maximum ethane conversion 20% at O2/C2H6 = 0.2) with H2 and CO selectivities of 93 and 84%, respectively.  相似文献   

13.
采用共沉淀法合成一系列具有不同Ce/Zr物质的量比的铈锆固溶体CexZr1-xO2,考察Ce/Zr比例对H2S选择氧化反应催化活性的影响。通过XRD、BET、Raman、XPS、CO2-TPD、O2-TPD、H2-TPR等手段对铈锆固溶体的晶体结构、表面性质、碱性位以及氧化还原性等进行表征。结果表明,所有的铈锆固溶体催化剂均可以在化学计量比的氧气下具有优良的低温催化活性,催化活性随着Ce/Zr比例的提高而增加,其中Ce0.9Zr0.1O2活性最高,(160~260) ℃转化率均保持在95%以上,在180 ℃时硫收率可达到97%,这主要是因为Ce0.9Zr0.1O2具有最多的中度碱性位、活性位数量和强的氧化还原性。同时推测Ce4+为催化反应的活性位,并遵循氧化还原机理。此外,催化剂的失活主要是由于催化剂表面生成硫酸盐物种,消耗了活性组分Ce4+。  相似文献   

14.
Ce0.5Zr0.5O2, Ce0.5Zr0.2Mn0.3O2 and Ce0.5Mn0.5O2 were prepared by citric acid sol–gel method. The effect of manganese on the structural and redox properties of ceria-based mixed oxides was investigated by means of powder X-ray diffraction, X-ray photoelectron spectroscopy, Brunauer–Emmett–Teller analyses, temperature-programmed reduction and catalytic activity evaluation in the presence of excess O2. The results showed that some Mn cations could enter into the ceria lattice to form solid solutions. Mn3O4 appeared due to the instability of the mixed oxides with increment of the Mn doping ratio while another oxide Mn2O3 is detected in the physical mixture of ceria and manganese oxide. These Mn-doped mixed oxides, especially Ce0.5Mn0.5O2, presented better catalytic activities than Ce0.5Zr0.5O2 and even Pt-loaded catalyst for total oxidation of C3H8 and oxidative sorption of NO in the presence of excess oxygen. The oxidation ability of Mn and the strong interaction between Mn and Ce were suggested to promote the oxygen storage/transport capacity of the mixed oxides as well as reactive adsorption of nitric oxide and hydrocarbons.  相似文献   

15.
CexTi1−xO2 oxides have been synthesised by sol–gel method with x varying from 0 to 0.3 and characterised by XRD and TPR. The structure of oxides changes with the Ce/Ti molar ratio. The presence of ceria in Ce-Ti oxides inhibits the phase transition from anatase to rutile. When x = 0.3 (Ce0.3Ti0.7O2 sample), the solid presents an amorphous state. The TPR results indicate that the presence of Ti enhances the reducibility of cerium oxide species. Catalytic oxidation of propene is investigated on Ce-Ti oxides and the better conversion is obtained with Ce0.3Ti0.7O2 but the CO2 selectivity reaches 63% at 400 °C. Gold is then deposited on theses oxides to improve the catalytic activity. On the basis of characterisation data (H2 TPR), it has been suggested that gold influences the reduction of the Ce-Ti oxide support and the catalytic activity to the propene oxidation. Thus, Au/Ce-Ti-O system catalysts are promising catalysts for propene oxidation.  相似文献   

16.
This paper reports results of studies on structure and activity in soot combustion of nanocrystalline CeO2 and CeLnOx mixed oxides (Ln = Pr, Tb, Lu, Ce/Ln atomic ratios 5/1). Nano-sized (4–5 nm) oxides with narrow size distribution were prepared by a microemulsion method W/O. Microstructure, morphology and reductivity of the oxides annealed up to 950 °C in O2 and H2 were analyzed by HRTEM, XRD, FT-IR, Raman spectroscopy and H2-TPR. Obtained mixed oxides had fluorite structure of CeO2 and all exhibited improved resistance against crystal growth in O2, but only CeLuOx behaved better than CeO2 in hydrogen.

The catalytic activity of CeO2, CeLnOx and physical mixtures of CeO2 + Ln2O3 in a model soot oxidation by air was studied in “tight contact” mode by using thermogravimetry. Half oxidation temperature T1/2 for soot oxidation catalysed by nano-sized CeO2 and CeLnOx was similar and ca. 100 °C lower than non-catalysed oxidation. However, the mixed oxides were much more active during successive catalytic cycles, due to better resistance to sintering. Physical mixtures of nanooxides (CeO2 + Ln2O3) showed exceptionally high initial activity in soot oxidation (decrease in T1/2 by ca. 200 °C) but degraded strongly in successive oxidation cycles. The high initial activity was due to the synergetic effect of nitrate groups present in highly disordered surface of nanocrystalline Ln2O3 and enhanced reductivity of nanocrystalline CeO2.  相似文献   


17.
For thermodynamic reasons, CO2 has always been considered as inert at mild reaction temperatures (300 °C). In this study, we show that CO2 may be used as a valuable compound for the catalytic combustion of methane (CCM), if ceria-based materials are used as support for the palladium active phase. Adding CO2 in the feed significantly improves performances of ceria-zirconia supported catalysts. On the contrary, catalytic performances are inhibited on Pd/γ-Al2O3. Inhibition can be avoided by mixing the Pd/γ-Al2O3 catalyst with some CeO2 evidencing cooperation phenomena between both catalysts. In situ DRIFTS experiments show that the inhibition of the alumina-supported catalyst is not due to formation of carbonates species. After an in situ reducing pre-treatment, pure CO2 is able to rapidly oxidize reduced Pd/Ce0.21Zr0.79O2 catalyst at 300 °C. Dissociation of CO2 on Ce0.21Zr0.79O2 would be responsible for the oxidation process. Thus, CO2 helps in replenishing the O reservoir (OSC) of the Ce-Zr-O support which is normally consumed by reductants such as CH4, H2 or other HC's. XPS experiments show enrichment in oxygen species bound to Ce (Low BE O1s) on the surface of ceria-zirconia when working in the presence of CO2. Implications of these results on the behavior of ceria-containing catalysts can be important for practical applications, e.g., in automotive exhaust catalysis.  相似文献   

18.
Structural, redox and catalytic deep oxidation properties of LaAl1−xMnxO3 (x=0.0, 0.05, 0.1, 0.2, 0.4, 0.6, 0.8, 1.0) solid solutions prepared by the citrate method and calcined at 1073 K were investigated. XRD analysis showed that all the LaAl1−xMnxO3 samples are single phase perovskite-type solid solutions. Particle sizes and surface areas (SA) are in the 280–1180 Å and 4–33 m2 g−1 ranges, respectively. Redox properties and the content of Mn4+ were derived from temperature programmed reduction (TPR) with H2. Two reduction steps are observed by TPR for pure LaMnO3, the first attributed to the reduction of Mn4+ to Mn3+ and the second due to complete reduction of Mn3+ to Mn2+. The presence of Al in the LaAl1−xMnxO3 solid solutions produces a strong promoting effect on the Mn4+→Mn3+ reducibility and inhibits the further reduction to Mn2+. Both for methane combustion and CO oxidation all Mn-containing perovskites are much more active than LaAlO3, so pointing to the essential role of the transition metal ion in developing highly active catalysts. Partial dilution with Al appears to enhance the specific activity of Mn sites for methane combustion.  相似文献   

19.
Pt-Rh/CexZr1−xO2-Al2O3 with 0.6 and 1.0 wt.% noble metal loadings were prepared and characterized for their metal dispersion with respect to CexZr1−xO2-free Pt-Rh/Al2O3 in fresh, thermally aged and oxychlorinated states. Thermal ageing at 973 K led to loss of metal dispersion in all cases but to negligible effect on the dispersion of the CexZr1−xO2 component where present. Oxychlorination was able to fully recover metal dispersion in all cases but led to different effects on the redox properties of CexZr1−xO2 which appeared to be related to the metal loadings. Despite showing improved dispersion following regeneration, higher loaded catalyst showed no improvement in light-off performance for either NO reduction or CO oxidation and showed poorer oxygen storage (OSC) ability, particularly at higher temperatures. Lower loaded catalyst showed improved dispersion, improved OSC and reduced light-off temperatures for NO reduction and CO oxidation after oxychlorination compared to that in the thermally aged state.  相似文献   

20.
The capability of flame-made Rh/Ce0.5Zr0.5O2 nanoparticles catalyzing the production of H2- and CO-rich syngas from butane was investigated for different Rh loadings (0–2.0 wt% Rh) and two different ceramic fibers (Al2O3/SiO2 and SiO2) as plugging material in a packed bed reactor for a temperature range from 225 to 750 °C. The main goal of this study was the efficient processing of butane at temperatures between 500 and 600 °C for a micro-intermediate-temperature SOFC system. Our results showed that Rh/Ce0.5Zr0.5O2 nanoparticles offer a very promising material for butane-to-syngas conversion with complete butane conversion and a hydrogen yield of 77% at 600 °C. The catalytic performance of packed beds strongly depended on the use of either Al2O3/SiO2 or SiO2 fiber plugs. This astonishing effect could be attributed to the interplay of homogeneous and heterogeneous chemical reactions during the high-temperatures within the reactor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号