首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 312 毫秒
1.
根据瓦斯渗流场、地应力场与煤体变形场之间的耦合关系,建立了考虑Klinkenberg效应的瓦斯运移气固耦合模型。进行了不同出煤量条件下水力冲孔耦合模型的数值模拟研究,结果表明:水力冲孔有效半径随抽采时间与出煤量的增加而增加;Klinkenberg效应对低透气性煤层中瓦斯的运移起促进作用,随着抽采时间的增加其促进作用愈加显著;煤层瓦斯压力的降低促使煤体骨架受到的有效应力增加,煤体内孔隙被压缩,导致孔隙率与渗透率的降低。  相似文献   

2.
通过耦合方程建立应力场和瓦斯运移场之间的耦合关系,得到考虑Klinkenberg效应和不考虑Klinkenberg效应时两种气—固全耦合模型的控制方程组,分别应用于同一单孔瓦斯抽采数值模型,对比分析了Klinkenberg效应对瓦斯压力、渗透率和孔隙率动态变化的影响规律,结果表明:Klinkenberg效应通过增大煤层渗透率,有助于瓦斯抽采,且随抽采时间的延长效果更加显著;煤化程度较高的煤在抽采时间较长(大于4个月)时需要考虑Klinkenberg效应的影响;由于渗流场和应力场的强耦合作用,孔隙率、渗透率、煤层瓦斯压力受抽采作用的影响范围同步变化。  相似文献   

3.
为高效评价近距离突出煤层群水力冲孔卸压瓦斯抽采效果,基于弹性力学、渗流力学和Klinkenberg效应等理论,建立了包含煤岩变形、瓦斯运移、孔隙率和渗透率演化数学方程的低透气性含瓦斯煤气固耦合模型,采用COMSOL Multiphysics数值模拟软件模拟分析了近距离突出煤层群水力冲孔钻孔周围煤体瓦斯压力与孔径之间的时...  相似文献   

4.
马越欣 《煤炭技术》2013,(10):76-78
煤与瓦斯突出具有突发性、不可预测性,成为了国内外煤矿开采领域研究的重点课题。文章以煤与瓦斯耦合为研究对象,结合克林肯伯格效应和吸附膨胀效应,确立了瓦斯渗透率和煤体孔隙率关系,并建立了煤与瓦斯固气耦合数学模型。通过对模型的数值模拟分析,结合实际测量验证了模型的有效性。此研究为煤与瓦斯突出的深层机理研究提供了可靠的数学依据。  相似文献   

5.
为了考虑长期抽采过程中时间效应对煤体渗透率的影响,结合平均有效应力建立了时间效应和气体解吸效应耦合作用下的深部煤体孔隙率及渗透率演化模型。运用COMSOL Multiphysics对钻孔周围瓦斯运移过程进行了定量计算,结合现场数据对是否考虑时间效应的瓦斯渗流场变化规律进行了对比分析,并对长期抽采过程中深部煤层瓦斯运移规律进行了模拟分析。结果表明:煤层渗透率随瓦斯压力的下降呈指数型上升趋势;考虑时间效应的孔隙率、渗透率模拟结果明显小于未考虑时间效应模型的结果,且随着抽采时间的增长,蠕变本构中的黏弹性元件使得煤体更为致密,深部煤层的时间效应越发明显,考虑时间效应的孔隙率、渗透率模拟结果与未考虑时间效应的结果差值逐渐增大;考虑时间效应的模拟结果与现场数据匹配度较高,更符合深部煤层孔隙率和渗透率的实际演化特征。在同一抽采时刻,随着距钻孔中心距离的减小,渗透率呈现升高的趋势,压力呈现降低的趋势,当模拟抽采时间为1 d时,临近钻孔中心处渗透率较大、瓦斯压力较小;在不同抽采时刻,当抽采时间逐渐增长时,相同位置处的渗透率逐渐增大,瓦斯压力逐渐减小,当抽采时间由1 d增至30 d时,临近钻孔中心处的渗透率增长近1. 4倍,瓦斯压力降低近3. 8倍,且模型内渗透率与瓦斯压力的演化趋于平衡状态。  相似文献   

6.
邻近层瓦斯越流规律及其卸压保护范围   总被引:4,自引:2,他引:2       下载免费PDF全文
以某煤矿上保护层开采为工程实例,基于保护层开采的煤层瓦斯越流理论,通过引入低渗透煤体渗透率与孔隙率的动态变化模型,建立了低渗透煤岩与瓦斯固-气动态耦合的瓦斯越流模型;针对上保护层开采的定解问题,进行了上保护层开采煤层瓦斯越流模型的数值计算,获取了保护层开采后邻近被保护层瓦斯压力分布规律;结合保护层开采保护范围的极限瓦斯压力判别准则,划定了上保护层开采的卸压保护范围。研究结果表明,该方法所划定的理论保护范围与现场考察结果基本一致,且理论结果相对于现场考察结果偏于安全。  相似文献   

7.
为了描述各向异性煤层与瓦斯耦合过程中的渗透演化规律,在煤体结构为正交各向异性假设的基础上,利用吸附作用下煤体变形叠加关系,建立正交各向异性渗透率方程,进一步推导出考虑煤体正交各向异性特征的气固耦合模型,利用该模型分析了九里山矿二1煤不同吸附压力下渗透率变化规律和亭南矿4#煤层钻孔倾角对抽采效果的影响。结果表明:在相同的围压下,面割理、端割理、垂直层理方向渗透率模拟结果随着瓦斯压力的增大而减小,规律与实验结果一致;渗透率模拟结果和实验结果在面割理、端割理、垂直层理方向的平均相对误差分别是2.55%、14.19%、4.26%,误差分析表明气固耦合模型合理;瓦斯抽采量随着钻孔倾角的增大而增加,在钻孔抽采设计时,增大钻孔与煤层层理面之间角度可以提高瓦斯抽采量。  相似文献   

8.
张玉莹 《煤》2015,(6):18-21
将煤体看作双重孔隙单渗透率的特殊多孔介质,考虑煤层变形引起的孔隙率及渗透率变化,瓦斯的渗流扩散及吸附瓦斯解吸过程,建立了煤层瓦斯抽采固气耦合数学物理模型。利用COMSOL软件,模拟研究了钻孔抽采过程中煤层瓦斯的运移规律。研究结果表明:煤层中某一位置的渗流速度变化曲线会随着其与钻孔距离的变化而变化,距离钻孔越远渗流速度达到最大值所用的时间越长,渗流速度最大值也越小。研究结果对治理煤层瓦斯具有重要意义。  相似文献   

9.
《煤炭技术》2017,(5):172-174
为了探究钻孔瓦斯抽采过程中瓦斯压力随时间的变化规律,通过建立流-固耦合模型,考虑渗透率、孔隙率和体积应变的动态变化,结合矿井煤层物性参数,运用多物理场软件进行了模拟分析。分析结果表明:随着抽采时间的延长,钻孔周围煤体瓦斯压力逐步降低,在瓦斯抽采过程中,瓦斯压力的降低有助于渗透率的提高,但影响效果甚微,埋藏深度对煤层渗透率起主导作用。  相似文献   

10.
保护层开采保护范围的极限瓦斯压力判别准则   总被引:2,自引:0,他引:2       下载免费PDF全文
针对传统的保护层开采保护范围的残余瓦斯压力判别准则在实际应用中的局限性,结合某煤矿上保护层开采工程,提出了一种新的保护层开采保护范围的极限瓦斯压力判别准则。根据煤与瓦斯突出的固气耦合失稳理论,通过引入煤体孔隙率与渗透率的动态变化模型,建立了有限变形下煤与瓦斯突出的固气动态耦合失稳模型;针对该工程实例,得到了被保护层发生煤与瓦斯突出的极限瓦斯压力值,从而建立了以极限瓦斯压力值为判定值的保护层开采保护范围的判别准则。研究结果表明,该工程的保护层开采保护范围的极限瓦斯压力判别准则的判定值为0.25 MPa,该准则反映了地应力、瓦斯压力与煤的结构对煤与瓦斯突出的综合作用。  相似文献   

11.
通过在多孔介质的有效应力原理中引入瓦斯吸附产生的膨胀应力,得出适用于含瓦斯煤岩的有效应力计算公式。同时利用含瓦斯煤岩的孔隙率和渗透率的动态模型,建立了能描述含瓦斯煤岩固气耦合情况下的骨架可变形性和气体可压缩性的固气耦合模型。以平顶山十矿的相关物性参数为基础进行了数值模拟,首先对建立的三维模型进行了开挖处理,得到了开挖后煤层的应力分布状态,而非简单的均布载荷,然后利用所建立的数学模型进行钻孔抽采瓦斯三维数值模拟。从数值模拟结果得到:① 抽采负压对钻孔抽采瓦斯的影响不明显;② 随着抽采时间的增长,煤层的孔隙率逐渐减小;③ 随着时间的推移,钻孔抽采瓦斯的有效抽采半径均逐渐增大,最后会迫近一个定值。  相似文献   

12.
李波波  杨康  李建华  任崇鸿  许江  左宇军  张敏 《煤炭学报》2018,43(10):2857-2865
利用等温吸附试验仪器与含瓦斯煤热-流-固耦合三轴伺服渗流装置,为模拟深部煤层瓦斯开采过程,分别进行不同温度下等温吸附试验与孔隙压力升高的渗流试验,建立考虑过剩吸附量修正的吸附模型并修正吸附膨胀模型,探究力热耦合作用下煤岩吸附与渗流变化规律。结果表明:瓦斯吸附量在不同温度下随瓦斯压力升高均呈增大趋势,随温度升高吸附量逐渐降低。在高压下需考虑过剩吸附量造成的误差,修正的Langmuir模型比原模型计算结果精度更高;建立了考虑温度与过剩吸附量修正的吸附变形模型与吸附膨胀模型,煤岩吸附应变随孔隙压力升高而减小,且温度越高应变变化量越小。随孔隙压力升高,煤岩渗透率及吸附膨胀与滑脱效应导致的渗透率变化量均呈下降的趋势,且随温度升高3者逐渐增加;吸附膨胀是引起煤岩渗透率减小的主要因素,吸附膨胀与滑脱效应对渗透率的贡献率随孔隙压力升高逐渐下降,其贡献率均随温度升高逐渐增加。  相似文献   

13.
基于弹性力学、渗流力学等理论,建立了地面井预抽瓦斯应力-渗流耦合模型,在此基础上结合工程实例,分析了地应力对瓦斯抽采效果的影响。计算结果表明:在地面井抽采作用下,煤层瓦斯压力不断减小,且地应力越大,瓦斯压力下降速度越慢;随着抽采的持续进行,造成煤体的有效应力增加和渗透率降低,同时由于瓦斯解吸,煤层孔裂隙重新变大和渗透率增加,2种效应共同作用下煤层渗透率总体呈现非线性增加趋势;地应力对地面井抽采效率影响显著,两者呈现负相关关系,即随着地应力的增加,煤层中的基质孔隙率下降和裂隙趋于闭合,造成煤层渗透性下降,最终导致了瓦斯抽采量的下降。  相似文献   

14.
为了准确地研究钻孔抽采瓦斯过程瓦斯压力,渗透率等参数变化规律和相互影响机理,结合煤层瓦斯流动和煤体变形理论,考虑钻孔抽采过程中渗透率和孔隙度动态变化,建立了含瓦斯煤体变形的耦合模型,并与非耦合模型进行对比分析。  相似文献   

15.
瓦斯压力对非均质煤岩抗压强度尺寸效应的影响   总被引:1,自引:0,他引:1       下载免费PDF全文
赵瑜  李晓红  卢义玉  康勇 《煤炭学报》2009,34(8):1081-1085
通过非均质固、气耦合数值试验的方法,研究不同瓦斯压力作用下非均质煤岩抗压强度尺寸效应的影响规律及其作用机理.研究表明:含瓦斯煤岩的抗压强度随着瓦斯压力的增加而呈非线性降低,其降低的幅度随着瓦斯压力的增加而增大;在煤岩裂纹萌生、扩展、演化过程中,通过渗流场与应力场的耦合作用,瓦斯压力降低了煤岩的有效应力,促使裂纹不同方向发育,导致应力局部集中和变形的局部化;增加煤岩的非均质性,促使煤岩均质度动态演化,使得同一均质度煤岩,瓦斯压力越大,抗压强度尺寸效应越明显,瓦斯压力对非均质煤岩抗压强度尺寸效应有显著影响.  相似文献   

16.
含水煤岩变形破坏过程中瓦斯运移规律的实验研究   总被引:2,自引:0,他引:2       下载免费PDF全文
配合自制煤岩三轴流固耦合夹持装置,采用实验方法对煤岩变形破裂过程中瓦斯运移规律进行研究。实验结果表明:煤岩破裂前后,瓦斯解吸量、解吸速率以及渗透率的差异较大,在弹性压密到强化阶段,瓦斯解吸规律基本遵循Langmuir等温吸附规律。在煤岩破裂阶段,瓦斯解吸量和解吸速率都急剧增大,瓦斯渗透率的变化表现为少许滞后于应变的特点;在瓦斯压力较低的情况下,煤岩渗透性能受含水饱和度的影响显著,破裂后气测渗透率值比压密阶段高近6倍,含水饱和度增大后,煤岩破裂前后气测渗透率变化规律大致相同,虽然增大了煤岩孔隙压力,但煤岩变形破裂全过程中测定的气测渗透率反而降低。  相似文献   

17.
高压气体射流破煤应力波效应分析   总被引:3,自引:0,他引:3       下载免费PDF全文
刘勇  何岸  魏建平  刘笑天 《煤炭学报》2016,41(7):1694-1700
针对松软低透煤层中水力化增透措施存在的塌孔、抑制瓦斯解析及运移等缺点,提出采用高压气体射流破煤卸压增透的技术方法。根据热力学相关理论,计算分析了气体射流破煤应力波产生的临界当地声速及压力;并进行了高压气体射流破煤实验,高压气体射流冲击煤体时,以准静态载荷和动态载荷作用于煤体,在煤体表面形成冲蚀坑,并以应力波加载的方式在煤体内形成贯穿裂纹导致煤体破裂。通过建立应力波在煤体内传播的弥散方程,分析了孔隙率和渗透率对应力波在煤体内传播的影响。结果表明孔隙率对波速有明显的影响,应力波的衰减随孔隙率增大呈增大趋势,且在高频时应力波衰减变化更为明显;低频时渗透率对波速的影响不大,高频时,在渗透率较低时波速随着渗透率的增大逐渐增大,且波速衰减呈现先增大后减小的趋势;当渗透率大于10-11时,波速不受渗透率的影响,同时应力波也未出现衰减。  相似文献   

18.
页岩气在页岩纳米孔隙中的运移对气藏的产能预测具有重要的意义。利用多物理场耦合软件COMSOL研究了单轴应变条件下,同时考虑岩层变形、气体流动及其相互作用时的页岩气运移。基于经典的Biot孔隙弹性理论考虑固体变形,并引入考虑多种流动机制的视渗透率模型修正传统的Darcy渗流模型,重点讨论表面吸附扩散、气藏初始孔隙率和固有渗透率对基质渗透率和流动机制的影响。结果表明:(1)页岩中的表面吸附扩散对页岩视渗透率有着重大的影响,尤其随着压力的降低,该影响更加明显,忽略表面吸附扩散将给出更低的视渗透率;(2)随着页岩气藏初始孔隙率的升高,Knudsen数和视渗透率升高,而随着初始渗透率的升高,Knudsen数和视渗透率降低;(3)Knudsen数、视渗透率和固有渗透率的变化取决于孔隙压力、解吸附、Knudsen扩散和表面吸附扩散等因素相互竞争的结果。  相似文献   

19.
李波波  李建华  杨康  任崇鸿  许江  张敏 《煤炭学报》2019,44(4):1076-1083
煤矿开采深度不断增加,煤层瓦斯含量升高导致动力灾害逐渐增多,给煤矿安全开采带来严峻考验。对于瓦斯在煤层中流动的研究一直以来都备受关注,其中渗透率正是影响煤层中瓦斯流动的关键参数之一。因此,为准确模拟开采环境变化导致的煤岩变形及渗透特性变化,利用含瓦斯煤热-流-固耦合三轴伺服渗流装置,开展不同含水条件下孔隙压力升高过程中煤岩渗透特性的试验研究,建立考虑含水率的吸附方程和吸附-渗透率模型,探讨含水率和孔隙压力共同作用对煤岩变形及渗透特性的影响。研究结果表明:①孔隙压力升高过程中,径向应变及轴向应变随孔隙压力的升高均呈降低趋势,瓦斯流量的变化呈上升趋势,煤基质由于吸附瓦斯产生膨胀变形,体积应变逐渐减小。②当含水率恒定时,随着孔隙压力的升高,瓦斯吸附量随孔隙压力增大先增大而后趋于平缓,产生的吸附变形的变化趋势与其相同;当孔隙压力恒定时,煤岩的吸附量和吸附变形均随着含水率的增大而减小。③在恒定含水率条件下,煤岩渗透率曲线随孔隙压力的升高先减小后趋于平缓;而在相同的孔隙压力条件下,随含水率的增加,煤岩渗透率整体逐渐减小,而且含水率越大孔隙压力对渗透率的影响越弱,水分子对渗透率的影响越强。④构建了考虑含水率的吸附量计算方程,并在此基础上进一步构建考虑含水率煤岩吸附-渗透率模型,其中所计算的渗透率值与试验所测结果基本一致,反映了煤岩渗透率变化规律。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号