首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Organic farming is gaining interest worldwide due to its low environmental impact. However, questions still remain about its long-term sustainability, particularly in terms of nutrient management. There is debate about the ability of organic farming systems to compensate for nutrient exports due to crop and animal production. Stockless systems are considered as the most critical and they are generally associated with negative farm-gate nutrient budgets. In this study, we examined the farm-gate nutrient budgets of 23 organic farms located in southwestern France, with special focus on stockless farming systems. Phosphorus (P) was taken as a case study due to the issue of its critical management in organic farming systems. The farms were characterised on the basis of interviews with farmers and the soil nutrient status was assessed through soil sampling. Results showed that none of the farms imported rock phosphate fertiliser. On the contrary, most farms imported organic fertiliser and/or compost and manure, the latter from neighbouring farms or urban areas. As a consequence, stockless farm P budgets were not necessarily negative and options existed from achieving better nutrient cycle closure. However, soil P test was low to moderate in many cases. These results suggested that P management in organic farming systems is not simply related to the mixed versus specialised characteristics of the farms and that nutrient cycling should be addressed and assessed at a larger, e.g., district, scale.  相似文献   

2.
Increased demand for certified organic products has led to an increase in the number of certified organic farms in developing countries. Knowledge of farmer nutrient management practices on certified organic farms in developing countries is limited. Thus, the aim of this study was to investigate the impact of the adoption of certified organic agriculture on farm nutrient flows and nutrient budgets, and evaluate to which degree organic farms comply with organic principles relating to nutrient management. The study is based on five case studies of different types of certified organic farming systems in Brazil, Egypt and China. Farm nutrient flows and nutrient budgets for nitrogen, phosphorous and potassium were created for each farm. Four of the five organic systems studied had nutrient surpluses on the farm budget. The surpluses were of varying magnitude. The main difference between organic and non-organic farm nutrient flows was the replacement of mineral fertilizers with organic inputs. However, the magnitude of nutrient flows were generally similar for organic and non-organic farms. Certified organic farms with positive nutrient budgets had a heavy reliance on external inputs. Continued high dependence on an external supply of nutrients, which typically originate from mineral sources, poses a significant challenge to organic farmers’ fulfilment of the principles of organic agriculture.  相似文献   

3.
Nitrogen (N) is the most important yield-limiting factor in agricultural systems, however, N application can lead to emissions and environmental problems such as global warming (N2O) and groundwater contamination (NO3 ?). This study analyses the N balance, nitrogen-use efficiency, and N loss potential of conventional farming systems (arable farming, improved arable farming, and agroforestry) and organic farming systems (mixed farming, arable farming, and agroforestry) based on long-term field experiments in southern Germany. The effects of the conversion of farm structure and N management are identified. The conventional farming systems in this study were high N-input and high N-output systems. The conventional arable farming system had the lowest nitrogen-use efficiency and the highest N surplus. An optimised N management and the use of high-yielding crop varieties improved its nitrogen-use efficiency. The establishment of conventional agroforestry resulted in the reduction of N input, N output and N surplus, while maintaining high yields. The organic mixed farming system is characterised by a relatively high N input and N output, the accumulation of soil organic nitrogen, the highest nitrogen-use efficiency, and the lowest N surplus of all analysed systems. These good results can be attributed to the intensive farm N cycle between soil–plant–animal. The shift from organic mixed farming to organic arable farming system extensified the N cycle, reduced N input, crop yield and N output. The change from organic arable farming to organic agroforestry reduced the N input, increased the biomass yield, and remained the N surplus within an optimal range.  相似文献   

4.
In organic agriculture, the internal farm nutrient cycle must bequantified to ensure high system productivity accompanied by environmentallysound production processes. In contrast to common farm-gate and field balances,budgeting at the stall level is seldom undertaken. When budgeting mixed farmingsystems, a substantial lack of nutrients can be detected in the forageand straw input – stall – manure output nutrient flow chain.Therefore, stall balances focus on a central component of whole-farm nutrientbudgets for developing efficient nutrient management strategies. At theexperimental farm for organic agriculture at Wiesengut in Hennef, Germany, allsolid mass flows for a suckler herd and a herd of beef bulls were measured.Relative balance values obtained for dry matter and C (45 to 56%), N (16to 36%), P (–7 to 22.5%), K (0 to 13%) and ash(–4 to 7%) varied over a wide range. Balances are very sensitive tovariations in mass flow and nutrient content for components with high nutrientcontents and/or a large contribution to total mass flow (e.g. manure, silage).In developing strategies to minimise N losses, by reducing N surplus in theration, one must consider, that, in contrast to dairy farms, a suckler herd forbeef production integrated in an organic farm has to adapt to crop productiondemands.  相似文献   

5.
Phosphorus availability on many organically managed farms in Europe   总被引:1,自引:0,他引:1  
Maintaining sufficient soil phosphorus (P) levels for non-limiting crop growth is challenging in organic systems since off-farm inputs of P are restricted. This study assessed the status of P on organic farms in Europe using soil test results for extractable P. Data was obtained from published literature, unpublished theses, and various national and regional databases of soil test values. Most of the data (15,506 observations) came from field scale soil tests, but in some cases (1272 observations) values had been averaged across a farm. Farm scale and field scale data were analysed separately and the impact of farm type (arable, dairy, grassland, horticulture, mixed, poultry, unknown) was assessed. Soil test results were assigned to P classes from very low (P class 1) to very high (P class 5). The farm scale data came primarily from Norway, Sweden and Switzerland and did not indicate deficiencies in extractable P; 93% of farms fell into class 3 or above. The majority of the field scale data came from Germany and indicated sufficient or higher levels of P availability for arable and grassland systems on 60% of fields; the remaining fields had low or very low available P. Adaptations in organic systems may improve P uptake and utilization efficiency allowing yields to be maintained in the short-term, nevertheless there is cause for concern about the long-term P sustainability of some organic farming systems in Europe. This highlights the need to reassess allowable P inputs in organic farming systems to improve overall sustainability.  相似文献   

6.
A farm-gate nutrient balance showed that the surpluses per hectare fell from 175 to 123 kg N, from 29 to 13 kg P and from 61 to 32 kg K from 1979/80 to 2003/04. Consequently, the nutrient use efficiency (total output in % of total input) increased for N from 20% in 1979/80 to 37% in 2003/04, for P from 23% to 52% and for K from 18% to 43%. Parallel to the peak in surplus of N around 1980, elevated nitrogen concentrations were observed in ground and marine waters. A series of agro-environmental action plans were initiated, and the discharge of N to Danish coastal waters was reduced, though less than the reduction in surplus and losses from agriculture. In contrast to N, the reduction in P surplus was not reflected in any reduction in discharge of P from agriculture during the last two decades. A farm-gate account of N surplus is a reasonable indicator of potential N loss, whereas loss of P is mainly related to the soil P saturation level and to specific loss events. By preparing accounts for sub-sectors such as the arable and animal production sectors or for products within these sectors, farm-gate nutrient balances show the development in agricultural production, in addition to the trend in potential environmental impacts. Nutrient balances may thus link the environmental aspect to the economic aspect of agricultural production and assist in the monitoring of the sustainability of agriculture.  相似文献   

7.
This paper investigated the determinants of nitrogen surplus, also denoted as nitrogen balance, at farm level in Swiss agriculture. Our analysis was based on a cross-section of 210 farms from the year 2010. The nitrogen surplus of each farm was estimated according to the OECD soil-surface approach and decomposed in two components—nitrogen intensity and nitrogen inefficiency. The average nitrogen surplus of the farms investigated amounted to 89 kg/ha, resulting from an average nitrogen intensity of 255 kg/ha and an average nitrogen inefficiency of 34%. The determinants of nitrogen surplus and its two components were analyzed by means of a three-equation regression model estimated using a robust seemingly unrelated regression approach. Farm size, part-time farming, organic farming, arable cropping and farmer’s age were found to decrease nitrogen surplus, whereas dairy, pig and poultry farming were associated with an increase in nitrogen surplus.  相似文献   

8.
Years of poor nutrient management practices in the agriculture industry in the North China Plain have led to large losses of nutrients to the environment, causing severe ecological consequences. Analyzing farm nutrient flows is urgently needed in order to reduce nutrient losses. A farm-level nutrient flow model was developed in this study based on the NUFER (NUtrient flows in Food chains, Environment and Resources use) model, and was used to analyze nitrogen (N) and phosphorus (P) flows, use efficiencies, and losses for nine representative farm types in the North China Plain. Data from 401 farms were evaluated for the years 2012–2015. The analysis showed that mixed farms were more efficient in nutrient utilization than crop-based or landless livestock farms. The efficiencies of N and P used in crop production were highest for mixed dairy farms, reaching 67% for N and 68% for P. Consistently, mixed dairy farms had the lowest N and P surpluses and losses in crop production. Mixed swine farms were 5 and 9% higher in N and P efficiency in livestock production than landless swine farms, respectively. Losses of N and P from the animal manure management chain were 20–42% lower for mixed swine and 69–78% lower for mixed poultry farms than for landless farms of the same animal type. This is at least partially due to more frequent manure removal. Integrated crop-livestock production using livestock wastes as crop fertilizer was shown to be the most sustainable model in nutrient use for the agriculture industry in the North China Plain.  相似文献   

9.
This paper analyzes nitrogen (N) flows on organic and conventional dairy farms in Sweden, and compares three indicators for the N pollution associated with the milk: (1) the farm-gate N surplus, (2) the chain N surplus, and (3) the N footprint. We find that, compared to indicators based on N surplus, the N footprint is a more understandable indicator for the N pollution associated with a product. However, the N footprint is not a replacement for the often-used farm-gate N surplus per unit area, since the two indicators give different information. An uncertainty analysis shows that, despite the large dataset, 1566 conventional and 283 organic farms, there is substantial uncertainty in the indicator values, of which a large part is due to possible bias in estimates of biological N fixation (BNF). Hence, although the best estimate is that conventional milk has 10–20% higher indicator values than organic, it is conceivable that improved estimates of BNF will change that conclusion. All three indicators simplify reality by aggregating N flows over time and space, and of different chemical forms. Thus, they hide many complexities with environmental relevance, which means that they can be misleading for decision-makers. This motivates further research on the relation between N surpluses and N footprints, and actual environmental damages.  相似文献   

10.
Soil nutrient depletion is increasingly regarded as a major constraint to sustainable food production in tropical environments. Research in the recent past focused on different scales, but few attempts were made to link them. In this paper, two cases are elaborated in Central America (CA) and Sub-Saharan Africa (SSA), in which the integration of different scales has been studied. Soil nutrient depletion has been calculated for fields, and has then been aggregated to farms, regions, and subcontinents. Key problems on aggregation of field nutrient balances to farms include nutrient flows between fields. Aggregation of farms to regions requires a generalization of individual farms into a farm typology. Aggregation of regions into subcontinents implies that the farm typology concept can mostly not be maintained, resulting in a generalized calculation based on national soil, climate and land use data bases. The field-farm step proved complicated for SSA due to the occurrence of a wide variety of nutrient flows between fields, whereas in CA these flows were much less pronounced; the farm-region step turned out to be manageable for both CA and SSA as farm typology adequately covered observed variation; the region-subcontinent step proved difficult for CA due to the considerable variation in management and input levels in farming systems, whereas this was less the case in SSA. The study shows that integration of spatial scales is constrained by both data availability (the tropical parameter crisis) and by scale-specific variability.  相似文献   

11.
The objective of this study was to quantify nitrogen (N), phosphorus (P), and potassium (K) use and cycling in a dairy farming system. The data were collected from the experimental farm at the National Institute of Livestock and Grassland Science in Tochigi Prefecture, Japan, using about 11 ha of forage crop fields and about 30 dairy cows. Forage crops grown in the field were ensiled and offered to the cows, and the subsequent compost from the animals’ excretion was applied to the field. The dairy farming system consisted of soil/crop, feed storage, animal, and compost components. Nutrient inputs and outputs and flows of the soil–plant–animal pathway for the whole farm and each component were measured for 5 years. Nutrient utilization was evaluated using nutrient balances, use efficiencies, and cycling indices. The 5 year average nutrient balances and nutrient use efficiencies of N, P, and K for the whole farm (kg ha?1 year?1) were 378, 97, and 199 and 0.25, 0.19, and 0.18, respectively. The characteristics of nutrient balances and use efficiencies for each component differed among N, P, and K. The average cycling indices of N, P, and K were 0.12, 0.11, and 0.37, respectively. Significant positive relationships between use efficiencies and cycling indices were observed in N and K. Year-to-year variations in flows were relatively large for compost application. The results suggested that improving N balance would be the most effective option for solving many of the environmental problems related to dairy farming.  相似文献   

12.
Farmgate balances (FGBs), defined as the difference between nutrient input and nutrient output at farm level, are currently used as a tool to monitor changes in nitrogen (N) and phosphorus (P) leaching to groundwater and surface water. We postulate that the estimator value of FGBs for N and P leaching to groundwater and surface water depends on (1) the distribution of N and P surpluses over fields within farms, and (2) the partitioning of the surplus over the various nutrient loss pathways. In this study, we assessed intra-farm variability of N and P surpluses and its possible consequences on N leaching to surface waters. Furthermore, we investigated the effect of policies to decrease N and P surpluses at farm level on N and P surpluses at field level. FGBs were derived for six dairy farms in a hydrologically rather isolated polder with grassland on peat soil for three years (1999, 2000 and 2001). Soil surface balances (SSBs), defined as the differences between nutrient input and nutrient output at field level, were derived for the accompanying 65 fields for the same years. On average, FGB surpluses decreased from 271 kg N ha–1 y–1 and 22 kg P ha–1 y–1 in 1999 to 213 kg N ha–1 y–1 and 13 kg P ha–1 y–1 in 2001. Variances in N and P surpluses between fields per farm were compared with variances between farms. For N, variances between fields per farm exceeded variances between farms for all years. A non-linear model was fitted on the measured N loading of the surface water. This model showed that N leaching to surface water was underestimated by 5–46% if the variability in N surpluses between fields per farm was not taken into account. We concluded that estimation of N leaching to surface water, based on data at farm level, can lead to underestimation of the N leaching due to the large variability in N surpluses between fields per farm. The extent of this bias by a given distribution of N surpluses within farms was largely controlled by the partitioning of the N surplus over the various nutrient loss pathways, notably denitrification.  相似文献   

13.
In the Seine Basin, characterised by intensive arable crops, most of the surface and groundwater is contaminated by nitrate (NO3 ?). The goal of this study is to investigate nitrogen leaching on commercial arable crop farms in five organic and three conventional systems. In 2012–2013, a total of 37 fields are studied on eight arable crop rotations, for three different soil and climate conditions. Our results show a gradient of soil solution concentrations in function of crops, lower for alfalfa (mean 2.8 mg NO3-N l?1) and higher for crops fertilised after legumes (15 mg NO3-N l?1). Catch crops decrease nitrate soil solution concentrations, below 10 mg NO3-N l?1. For a full rotation, the estimated mean concentrations is lower for organic farming, 12 ± 5 mg NO3-N l?1 than for conventional farming 24 ± 11 mg NO3-N l?1, with however a large range of variability. Overall, organic farming shows lower leaching rates (14–50 kg NO3-N ha?1) than conventional farms (32–77 kg NO3-N ha?1). Taking into account the slightly lower productivity of organic systems, we show that yield-scaled leaching values are also lower for organic (0.2 ± 0.1 kg N kg?1 N year?1) than for conventional systems (0.3 ± 0.1 kg N kg?1 N year?1). Overall, we show that organic farming systems have lower impact than conventional farming on N leaching, although there is still room for progress in both systems in commercial farms.  相似文献   

14.
Nitrate contamination of groundwater: Measurement and prediction   总被引:1,自引:0,他引:1  
Agriculture makes a significant contribution to the diffuse source contamination of surface and groundwater resources, particularly contributing to the NO 3 - contamination of groundwater. Two approaches were adopted to evaluate management practices (within the context of the whole farming system) for their impacts on the environment : (1) measurement of the quality of groundwater under different farming systems, and (2) comparison of predictions of the impact of farming systems on water quality, obtained using whole farm N budgets, with measured values.The Ontario Farm Groundwater Quality Survey evaluated the rural groundwater quality in Ontario, with respect to common contaminants including NO 3 - . Approximately 1300 domestic farm wells were sampled, and wells were drilled in some fields of farms involved in the study. NO 3 - was present at concentrations above the maximum acceptable for drinking water (10 mg N 1–1) in 14% of wells, including 7% of wells that also had unacceptable concentrations of coliform bacteria. Significant levels of NO 3 - contamination were observed under most agricultural land use practices investigated.Calculation of N budgets was simplified by assuming that there was no net change in the N content of farm assets. The N inputs to agricultural systems considered were: purchases from off-farm suppliers, N2 fixation and atmospheric deposition. Symbiotic N2 fixation was estimated from empirical relationships between crop yield and N2 fixed. The N outputs were in sales of plant and animal produce, gaseous and leaching losses. Gaseous loss was assumed to result only from volatilization of ammonia, estimated to be 39% of total manure N.We have identified one cash crop farming system where there was a true balance. The rotation included corn soybeans and wheat, with two years of soybean always being grown before corn. Many livestock farms, including two organic farms, gave large imbalances of N which might indicate that these operations were not in equilibrium.The relationship between measured and predicted values of NO 3 - -N expected in the groundwater under the different management systems showed that the simplified N budget overestimated the NO 3 - -N concentration by about one third. However, the budget approach appeared to identify farms where contamination was likely even if the actual amount was over estimated. Simplified budgets could therefore be used to compare the potential of different farming systems for causing environmental contamination.  相似文献   

15.
Nutrient balances are useful indicators to assess the sustainability of farming systems. This study study investigates inflow and outflow of major nutrients in urban and periurban production systems in Kano, Nigeria. To this end, 16 households representing three different urban and peri-urban (UPA) farming systems were studied using the MONQI toolbox (formerly known as NUTMON) to calculate nutrient flows and economic performances. The farm nitrogen (N) balance was positive at 56.6, 67.4 and 56.4 kg farm?1 year?1 for commercial garden and crop-livestock (cGCL), commercial gardening and semi-commercial livestock (cGscL) and commercial livestock subsistence field cropping (cLsC) farm types, respectively. The same trend was observed for phosphorus (P) and potassium (K) in all farm types except an annual negative K balance of 16 kg farm?1 in cGCL. Across the different activities within the farms, land uses had positive N (359, 387 and 563 kg N ha?1 year?1) and P (74, 219 and 411 kg P ha?1 year?1) balances for all farm types, but again a negative K balance in cGCL with an average loss of 533 kg K ha?1 year?1. Partial nutrient balances in livestock production indicated a positive balance for all nutrients across the farms types but were slightly negative for P in cLsC. Commercial livestock keeping (cLsC) was economically more profitable than the other farm types with an average annual gross margin (GM) and net cash flow (NCF) of $9,033 and $935. Cropping activities within cGCL and cGscL had GMs of $1,059 and $194 and NCFs of $757 and $206, respectively, but livestock activities in both farm types incurred financial losses. Potassium inputs were limited under vegetable and crop production of cGCL, threatening long-term K nutrient availability in this system. Overall, the results indicated large annual surpluses of N and P in urban and peri-urban vegetable and crop production systems which pose a potential threat when lost to the environment. Appropriate policies should aim at promoting sustainable production through efficient nutrient management in the Kano UPA sector.  相似文献   

16.
Balances of major nutrients such as nitrogen (N), phosphorus (P), and potassium (K) in small-scale farming systems are of critical importance to nutrient management and sustainable agricultural development. Mass balances of N, P, and K and some of their influencing factors were studied for two years from July 2003 to July 2005 on small-scale vegetable-farming systems in two contrasting peri-urban areas (Nanjing and Wuxi) of the Yangtze river delta region of China. This balance approach considered organic fertilizer inputs (cow manure, pig manure, and human biosolids), inorganic fertilizer inputs (urea, composite fertilizer, and phosphates), irrigation water, and atmospheric deposition; and considered outputs by vegetables. Input via organic fertilizers was significant for all element balances in the Nanjing area. Inorganic and organic fertilizer, particularly inorganic fertilizer, contributed major nutrient inputs to the system in the Wuxi area. Compared with nutrient output by vegetables, there were significant surpluses of N and P on two vegetable farm systems. Furthermore, N surplus in the Nanjing area was higher than that in the Wuxi area with an inverse relationship to P surplus. In contrast, the general trend of K balances was negative on both sites; hence, the nutrient use efficiency was significantly lower for N and P than K. The nutrient imbalance may be attributed to the differences between fertilizer types and management modes driven by social economic status differences among farmer households. The large N and P net excess creates an environmental threat because of potential losses to ground or surface waters, whereas negative K balance creates soil fertility risks. The results highlight researchers’ and farmers’ need to develop rational fertilization technology to optimize nutrient management on vegetable farmlands to promote sustainable agricultural development in peri-urban areas.  相似文献   

17.
Farm typologies are a useful tool to assist in unpacking and understanding the wide diversity among smallholder farms to improve targeting of crop production intensification strategies. Sustainable crop production intensification will require the development of an array of nutrient management strategies tailored to farm-specific conditions, rather than blanket recommendations across diverse farms. This study reviewed key literature on smallholder farm typologies focusing on three countries (Kenya, Malawi and Zimbabwe), to gain insights on opportunities for crop production intensification, and the importance of developing farm-specific nutrient management practices. Investigations on farm typologies have done well in highlighting the fundamental differences between farm categories, with 3–5 typologies often adequate to represent the wide differences in resource endowment. Resource-endowed farmers have ready access to large quantities of manure and mineral fertilizers, which contribute to higher soil fertility and crop productivity on their farms. Resource-constrained households use little or no manure and mineral fertilizers, and have limited capacity to invest in labour-demanding soil fertility management technologies. These farmers often have to rely on off-farm opportunities for income that are largely limited to selling unskilled labour to their resource-endowed neighbors. The variability in management practices by farmers has resulted in three main soil fertility classes that can be used for targeting soil fertility management technologies, characterized by potential response to fertilizer application as: (1) low-responsive fertile fields that receive large additions of manure and fertilizer; (2) high-responsive infertile fields that receive moderate nutrient applications; (3) poorly responsive degraded soils cultivated for many years with little or no nutrient additions. The main conclusions drawn from the review are: (1) resource constrained farmers constitute the widest band across the three countries, with many of the farmers far below the threshold for sustainable maize production intensification and lacking capacity to invest in improved seed and fertilizer, (2) farm sizes and livestock ownership were key determinants for both farmer wealth status and farm productivity, and (3) soil organic carbon and available P were good indicators for predicting previous land management, that is also invariably linked to farmer resource endowment.  相似文献   

18.
There is much current interest in the potential role of agroforestry in the mitigation of nutrient depletion in Sub-Saharan Africa. Using data from farm surveys and trials, a static model of N and P flows was constructed for a standard farm system, representative of typical subsistence farms in humid parts of the East African Highlands. The model was used to explore the possible impact of improved agroforestry systems on nutrient budgets, to identify priorities for research.Soil nutrient balances in the standard farm system were - 107 kg N and - 8 kg P ha–1 yr–1. Agroforestry systems did not significantly reduce the N deficits except when a high proportion of the total biomass was returned to the soil, rather than removed from the farm. Agroforestry increased N input through biological N fixation and deep N uptake, but this was offset by a larger nutrient removal from the farm in harvested products, which increased from 38 kg N in the standard system to 169 kg N ha–1 yr–1 in an intensive dairy-agroforestry system. Agroforestry did not increase P inputs, and harvested P increased from 6 kg P in the standard farm system to 29 kg P ha–1 yr–1 in the dairy-agroforestry system. Thus, moderate P inputs, of 20 kg P ha–1 yr–1 were required to maintain soil P stocks.N leaching from the field was the most significant nutrient loss from the farm system, with a range of 68 to 139 kg N ha–1 yr–1. The capture of subsoil N by deep-rooted trees in agroforestry systems substantially increased N-use efficiency, providing 60 kg N ha–1 yr–1 in the dairy-agroforestry system. The budgets were sensitive to N mineralization rates in subsoils, N losses from soils and manures, and effectiveness of deep-rooted plants in subsoil N capture, for which there is little data from the region. Therefore, high priority should be given to research in these areas.The current model can not account for important feedback mechanisms that would allow analysis of the long-term effects of nutrient budgets on nutrient availability and plant productivity. Dynamic models of farm nutrient budgets that include such interactions are needed to further assess the sustainability of farming systems.  相似文献   

19.
Farm nitrogen flows of four farmer field schools in Kenya   总被引:1,自引:1,他引:0  
Re-use of nutrients within farming systems contributes to sustainable food production in nutrient limited production systems. Re-use is established when nutrients pass through several farm compartments before they leave the farm via marketable products. In this paper re-use of nitrogen is examined as an indicator for sustainable soil fertility management. Re-use (RU, kg farm−1) was defined as the amount of nitrogen that was translocated within one farm divided by the sum of transitions between farm compartments within a farm. In 2002, a total of 101 farms belonging to 4 farmer field schools in Kenya were analysed using the NUTMON (now known as MonQI) toolbox. The farms were distributed over 4 farmer field schools located in two agro-ecological zones. RU was positively related to the net farm income and to crop yields. However, data were scattered and often local farm conditions veiled the relation between nitrogen management strategies and farm performances. The results of this paper demonstrate that different agro-ecological zones with diverse production constraints have developed different in-farm nitrogen management strategies that are best adapted to the local conditions, but may have different environmental impacts. An erratum to this article can be found at  相似文献   

20.
New Zealand’s indirect nitrous oxide (N2O) emissions have been estimated to contribute approximately 23% of the national nitrous oxide inventory. However, there is great uncertainty about this figure. Currently the intergovernmental panel for climate change (IPCC) calculation is used, where a proportion (FracLEACH) of nitrogen (N) applied to land as animal excreta or fertiliser is leached or runs off, and a further proportion is later emitted as N2O. New Zealand has been using a value of 0.15 (FracLEACH[NZ]) and this paper examined whether (FracLEACH[NZ]) is appropriate for New Zealand conditions. For a range of typical farming systems, we compared N leaching estimates calculated using the IPCC formula with estimates obtained using the OVERSEER® nutrient budget model calibrated for New Zealand conditions. The comparison suggested that FracLEACH[NZ] is too high for dairy and sheep and beef farming systems. In?contrast, the FracLEACH values estimated for arable and intensive vegetable systems using the OVERSEER® model were much closer to 0.3 (the IPCC default value). However, in New Zealand, arable cropping and intensive vegetable farms occupy only a small proportion of land compared to pastoral farming. Based on this study, we suggest that a FracLEACH value of 0.07 is appropriate for New Zealand conditions; this more accurately reflects the proportion of N applied to pastoral land that may leach or runoff. Using this value in the IPCC calculation for the New Zealand inventory would approximately halve the national estimate of indirect N2O emissions due to leaching or runoff of N, reducing the national estimate of N2O emissions by 12%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号