首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This study evaluates the fate of nitrogen (N) content in winter cover crops under different tillage intensities. Field trials were conducted over a 2-year period in a Mediterranean environment adopting a cover crop–eggplant sequence. The treatments were: three cover crops (hairy vetch, oat and oilseed rape); three tillage intensities (residue left on soil surface, shallow green manure and deep green manure). The measurements included: cover crop and eggplant characteristics, N mineralization from cover crops, soil inorganic N and soil CO2 emission. At cover crop termination, N accumulated in the cover crops was 207, 77 and 77 kg N ha?1 in hairy vetch, oat and oilseed rape, respectively. Tillage intensity affected biomass decomposition and N mineralization from cover crop residues which were slower when residues were left on soil surface (54 and 71%, respectively) than when incorporated into the soil (66 and 79%, respectively). Hairy vetch showed a greater ability to supply N to eggplant (151 kg N ha?1), due to the fast decay of its residues, consequently, the N balance index was always high after hairy vetch throughout eggplant cultivation. N mineralized by cover crops was positively correlated with total soil CO2 emission and soil inorganic N. Placing cover crop residues on soil surface enhances synchronization between N mineralized and eggplant N demand in hairy vetch, while in oat it appears to mitigate the shortage of soil inorganic N for the following vegetable. These findings may also be extended to other summer vegetables which have similar requirements to the eggplant.  相似文献   

2.
Fertilization with biogas residues from the digestion of energy crops is of growing importance. Digestate from silage maize (Zea mays L.) is a new fertilizer with a high potential for ammonia (NH3) and nitrous oxide (N2O) emission. The aim of this study was to determine the effect of different maize fertilization systems [180 kg N ha?1 in form of calcium nitrate (MIN), biogas digestate from maize (DIG) and biogas digestate from maize mixed with the nitrification inhibitor Piadin (DIG + NI)] on the emission of NH3 and N2O from a sandy soil and to assess the total greenhouse gas emission of these fertilization systems. The study is based on a randomized field plot experiment in central Germany and an experimental period of a full year. Annual N2O-N emission was generally low [0.21 (MIN) to 0.37 (DIG) kg N ha?1] without differences between treatments. The application of Piadin reduced N2O emissions by 37 and 62 % during the weeks following digestate application but the annual N2O emission was not affected by the fertilization treatment. NH3 emission was only significant for treatments fertilized with digestate. It was not affected by Piadin and accounted for 27 % (+NI) and 29 % of the applied ammonium. Total greenhouse gas emission was dominated by NH3 losses (reducing the fertilizer value and inducing indirect N2O emissions) for the treatments fertilized with maize digestate. The most important greenhouse gas emission source of the MIN treatment were emissions from fertilizer production. Our results show the high potential of digestate from maize as a new source of NH3 emission. Mitigation measures are essential to save the value of this new fertilizer type and to reduce atmospheric and environmental pollution by direct emission of NH3 and indirect emission of greenhouse gases.  相似文献   

3.
Split application of nitrogen (N), applied by broadcasting, is both time consuming and inconvenient; yet it is widely practised for wheat. Simplified N fertilization is necessary for wheat in south-eastern China. One-time band application was compared with split application using three doses of N (150, 195, and 240 kg ha?1) in 2014/2015 and 2015/2016. Grain yield and N-use efficiency of winter wheat were determined over two consecutive seasons. A corresponding micro-plot trial using 15N-labelled urea was conducted only in 2015/2016 to measure the fate of urea-15N. The two methods showed no difference in grain yield, except at 240 kg ha?1 of N in 2014/2015. The average grain N concentration (18.2 g kg?1) was slightly lower in band application than that in broadcast application (19.2 g kg?1), but there was no significant difference (P > 0.05). In 2014/2015, N apparent recovery efficiency ranged from 33.1 to 49.9%; N agronomic efficiency, from 8.9 to 38.9 kg kg?1; and N partial factor productivity, from 23.6 to 38.4 kg kg?1. In 2015/2016, the corresponding values were 29.4–38.6%, 13.5–38.6, and 24.3–33.9 kg kg?1. In the micro-plot trial, compared to split application, fertilizer N recovery in winter wheat in one-time band application was lower by 26.5% and increased the unaccounted-N loss by 21.7%. Thus, considering environmental impacts, one-time band application of N at sowing is not a suitable alternative to broadcast application in split doses for winter wheat in the loamy soils of south-eastern China.  相似文献   

4.
A major future challenge in agriculture is to reduce the use of new reactive nitrogen (N) while maintaining or increasing productivity without causing a negative N balance in cropping systems. We investigated if strategic management of internal biomass N resources (green manure ley, crop residues and cover crops) within an organic crop rotation of six main crops, could maintain the N balance. Two years of measurements in the field experiment in southern Sweden were used to compare three biomass management strategies: anaerobic digestion of ensiled biomass and application of the digestate to the non-legume crops (AD), biomass redistribution as silage to non-legume crops (BR), and leaving the biomass in situ (IS). Neither aboveground crop N content from soil, nor the proportion of N derived from N2 fixation in legumes were influenced by biomass management treatment. On the other hand, the allocation of N-rich silage and digestate to non-legume crops resulted in higher N2 fixation in AD and BR (57 and 58 kg ha?1 year?1), compared to IS (33 kg ha?1 year?1) in the second study year. The N balance ranged between ??9.9 and 24 kg N ha?1, with more positive budgets in AD and BR than in IS. The storage of biomass for reallocation in spring led to an increasing accumulation of N in the BR and AD systems from one year to another. These strategies also provide an opportunity to supply the crop with the N when most needed, thereby potentially decreasing the risk of N losses during winter.  相似文献   

5.
National and regional efforts are underway to increase fertilizer use in sub-Saharan Africa, where attaining food security is a perennial challenge and mean fertilizer use in many countries is <10 % of nationally recommended rates. Increases in nitrogen (N) inputs will likely cause increased emissions of the greenhouse gas nitrous oxide (N2O). We established experimental plots with different rates of N applied to maize (Zea mays) in a field with a history of nutrient additions in western Kenya and measured N2O fluxes. Fertilizer was applied by hand at 0, 50, 75, 100, and 200 kg N ha?1 in a split application on March 22 and April 20, 2010. Gas sampling was conducted daily during the week following applications, and was otherwise collected weekly or biweekly until June 29, 2010. Cumulative fluxes were highest from the 200 kg N ha?1 treatment, with emissions of 810 g N2O–N ha?1; fluxes from other treatments ranged from 620 to 710 g N2O–N ha?1, but with no significant differences among treatments. Emissions of N2O during the 99-day measurement period represented <0.1 % of added fertilizer N for all treatments. Though limited to a single year, these results provide further evidence that African agricultural systems may have N2O emission factors substantially lower than the global mean.  相似文献   

6.
Meeting food security requirements in sub-Saharan Africa (SSA) will require increasing fertilizer use to improve crop yields, however excess fertilization can cause environmental and public health problems in surface and groundwater. Determining the threshold of reasonable fertilizer application in SSA requires an understanding of flow dynamics and nutrient transport in under-studied, tropical soils experiencing seasonal rainfall. We estimated leaching flux in Yala, Kenya on a maize field that received from 0 to 200 kg ha?1 of nitrogen (N) fertilizer. Soil pore water concentration measurements during two growing seasons were coupled with results from a numerical fluid flow model to calculate the daily flux of nitrate-nitrogen (NO3 ?-N). Modeled NO3 ?-N losses to below 200 cm for 1 year ranged from 40 kg N ha?1 year?1 in the 75 kg N ha?1 year?1 treatment to 81 kg N ha?1 year?1 in the 200 kg N ha?1 treatment. The highest soil pore water NO3 ?-N concentrations and NO3 ?-N leaching fluxes occurred on the highest N application plots, however there was a poor correlation between N application rate and NO3 ?-N leaching for the remaining N application rates. The drought in the second study year resulted in higher pore water NO3 ?-N concentrations, while NO3 ?-N leaching was disproportionately smaller than the decrease in precipitation. The lack of a strong correlation between NO3 ?-N leaching and N application rate, and a large decrease in flux between 120 and 200 cm suggest processes that influence NO3 ?-N retention in soils below 200 cm will ultimately control NO3 ?-N leaching at the watershed scale.  相似文献   

7.
Establishment of proper guidelines for irrigation and nitrogen (N) fertilizer management may lead to higher crop fertilizer N use efficiency (FNUE), increasing water conservation and reducing nutrient losses from agricultural systems. The objective of this study was to determine FNUE of potato for three application timings: at planting, emergence and tuber initiation cultivated under three irrigation methods: seepage, subirrigation and sprinkler. A total of 168 kg ha?1 of N was equally split into three applications of 56 kg ha?1 as ammonium nitrate (NH4NO3). FNUE from each application timing in all irrigation methods was evaluated substituting the conventional N fertilizer by an isotope labeled-ammonium nitrate (15NH 4 15 NO3) with 1.18% enrichment in excess. Irrigation method had no significant effects on tuber yield and FNUE. The average tuber yield was 32.1 Mg ha?1 and overall FNUE was 41%. Across the N application timing treatments, the lowest FNUE was measured for the at-planting application (18%), followed by the emergence N application (44%) and tuber initiation N application (62%). Unaccounted N fertilizer during the potato season amounted to 98 kg ha?1 from the total 168 kg ha?1 of N applied. N applied at emergence and tuber initiation were important to increase FNUE and tuber yield, however, some N was required at planting, even with the high potential of N losses for that application.  相似文献   

8.
Management intensification has raised concerns about the sustainability of homegardens in the Nuba Mountains, Sudan. This study aimed at assessing the sustainability of these agroecosystems following the approach of carbon (C) and nutrient balances. Three traditional (low input) and three intensified (high input) homegardens were selected for monitoring of relevant input and output fluxes of C, nitrogen (N), phosphorus (P) and potassium (K). The fluxes comprised those related to management activities (soil amendments, irrigation, and biomass removal) as well as estimates of biological N2 fixation, C fixation by photosynthesis, wet and dry deposition, gaseous emission, and leaching. Annual balances for C and nutrients amounted to ?21 kg C ha?1, ?70 kg N ha?1, 9 kg P ha?1 and ?117 kg K ha?1 in high input homegardens and to ?1,722 kg C ha?1, ?167 kg N ha?1, ?9 kg P ha?1 and ?74 kg K ha?1 in low input homegardens. Photosynthesis C was the main C input flux with averaged of 7,047 and 5,610 kg C ha?1 a?1 in high and low input systems, respectively. Biological N2 fixation (17 kg N ha?1 a?1) was relevant only in low input systems. In both systems, the annual input of 77 kg K ha?1 through dust was highly significant and annual gaseous C losses of about 5,900 kg C ha?1 were the main C loss. In both garden types, the removal of biomass accounted for more than half of total nutrient exports of which one-third resulted from weeding and removal of plant residues and two-third from harvest. The observed negative nutrient balances may lead to a long-term decline of crop yields. Among other measures the reuse of C and nutrients in biomass removals during the cleaning of homegardens may allow to partially close C and nutrient cycles.  相似文献   

9.
In the North China Plain, a field experiment was conducted to measure nitrous oxide (N2O) and methane (CH4) fluxes from a typical winter wheat–summer maize rotation system under five integrated agricultural management practices: conventional regime [excessive nitrogen (N) fertilization, flood irrigation, and rotary tillage before wheat sowing; CON], recommended regime 1 (balanced N fertilization, decreased irrigation, and deep plowing before wheat sowing; REC-1), recommended regime 2 (balanced N fertilization, decreased irrigation, and no tillage; REC-2), recommended regime 3 (controlled release N fertilizer, decreased irrigation, and no tillage; REC-3), and no N fertilizer (CK). Field measurements indicated that pulse emissions after N fertilization and irrigation contributed 19–49 % of annual N2O emissions. In contrast to CON (2.21 kg N2O-N ha?1 year?1), the other treatments resulted in significant declines in cumulative N2O emissions, which ranged from 0.96 to 1.76 kg N2O-N ha?1 year?1, indicating that the recommended practices (e.g., balanced N fertilization, controlled release N fertilizer, and decreased irrigation) offered substantial benefits for both sustaining grain yield and reducing N2O emissions. Emission factors of N fertilizer were 0.21, 0.22, 0.23, and 0.37 % under CON, REC-1, REC-3, and REC-2, respectively. Emissions of N2O during the freeze–thaw cycle period and the winter freezing period accounted for 9.7 and 5.1 % of the annual N2O budget, respectively. Thus, we recommend that the monitoring frequency should be increased during the freeze–thaw cycle period to obtain a proper estimate of total emissions. Annual CH4 fluxes from the soil were low (?1.54 to ?1.12 kg CH4-C ha?1 year?1), and N fertilizer application had no obvious effects on CH4 uptake. Values of global warming potential were predominantly determined by N2O emissions, which were 411 kg CO2-eq ha?1 year?1 in the CK and 694–982 kg CO2-eq ha?1 year?1 in the N fertilization regimes. When comprehensively considering grain yield, global warming potential intensity values in REC-1, REC-2, and REC-3 were significantly lower than in CON. Meanwhile, grain yield increased slightly under REC-1 and REC-3 compared to CON. Generally, REC-1 and REC-3 are recommended as promising management regimes to attain the dual objectives of sustaining grain yield and reducing greenhouse gas emissions in the North China Plain.  相似文献   

10.
Two crop rotations dominated by spring cereals and grass/clover leys on a clay soil were studied over 2 years with respect to nitrogen (N) and phosphorus (P) leaching associated with pig or dairy slurry application in April, June and October. Leaching losses of total N (TN), total P (TP), nitrate-N and dissolved reactive P (DRP) were determined in separately tile-drained field plots (four replicates). Mean annual DRP leaching after October application of dairy slurry (17 kg P ha?1) to growing grass/clover was 0.37 kg ha?1. It was significantly higher than after October application of pig slurry (13 kg ha?1) following spring cereals (0.16 kg ha?1) and than in the unfertilised control (0.07 kg P ha?1). The proportion of DRP in TP in drainage water from the grass/clover crop rotation (35 %) was higher than from the spring cereal rotation (25 %) and the control (14 %). The grass/clover rotation proved to be very robust with respect to N leaching, with mean TN leaching of 10.5 kg ha?1 year?1 compared with 19.2 kg ha?1 year?1 from the cereal crop rotation. Pig slurry application after cereals in October resulted in TN leaching of 25.7 kg ha?1 compared with 7.0 kg ha?1 year?1 after application to grass/clover in October and 19.1 kg ha?1 year?1 after application to spring cereals in April. In conclusion, these results show that crop rotations dominated by forage leys need special attention with respect to DRP leaching and that slurry application should be avoided during wet conditions or combined with methods to increase adsorption of P to soil particles.  相似文献   

11.
In this study, we measured nitrous oxide (N2O) fluxes from plots of fall-planted hairy vetch (HV, Vicia villosa) and spring-planted broadleaf vetch (BLV, Vicia narbonensis) grown as nitrogen (N) sources for following summer forage crabgrass (Digitaria sanguinalis). Comparisons also included 60 kg ha?1 inorganic N fertilizer for crabgrass at planting (60-N) and a control without N fertilizer. Each treatment had six replicated plots across the slope. Fluxes were measured with closed chamber systems during the period between spring growth of cover crops and first-cut of crabgrass in mid-July. HV had strong stand and aboveground biomass had 185?±?50 kg N ha?1 (mean?±?standard error, n?=?6) at termination. However, BLV did not establish well and aboveground biomass had only 35?±?15 kg N ha?1. Ratio vegetation index of crabgrass measured as proxy of biomass growth was highest in HV treatment. However, total aboveground biomass of crabgrass was statistically similar to 60-N plots. Fluxes of N2O were low prior to termination of cover crops but were as high as 8.2 kg N2O ha?1 day?1 from HV plots after termination. The fluxes were enhanced by large rainfall events recorded after biomass incorporation. Rainfall enhanced N2O fluxes were also observed in other treatments, but their magnitudes were much smaller. The high N2O fluxes from HV plots contributed to emissions of 30.3?±?12.4 kg N2O ha?1 within 30 days of biomass incorporation. Emissions were only 2.0?±?0.7, 3.4?±?1.3 and 1.0?±?0.4 kg N2O ha?1 from BLV, 60-N and control plots, respectively.  相似文献   

12.
Restoring soil fertility in smallholder farming systems is essential to sustain crop production. An experiment was conducted in 2011 and 2012 to study the effect of compost and inorganic fertilizer application on soil chemical properties and wheat yield in northwest Ethiopia. Full factorial combinations of four levels of compost (0, 4, 6, 8 t ha?1) and three levels of inorganic fertilizers (0–0, 17.3–5, 34.5–10 kg N–P ha?1) were compared in a randomized complete block design with three replications. In 2012, two sets of trials were conducted: one was the repetition of the 2011 experiment on a new experimental plot and the second was a residual effect study conducted on the experimental plots of 2011. Results showed that in the year of application, applying 6 t compost ha?1 with 34.5–10 kg N–P ha?1 gave the highest significant grain yield. In the residual effect trial, 8 t compost ha?1 with 34.5–10 kg N–P ha?1 gave 271 % increase over the control. Grain protein content increased 21 and 16 % in the current and residual effect trials, respectively, when 8 t compost ha?1 was applied; it increased 11 and 14 % in the current and residual effect trials, respectively, when 34.5–10 kg N–P ha?1 was applied. Under the current and residual effects of 8 t compost ha?1, SOM increased 108 and 104 %; available P 162 and 173 %; exchangeable Ca 16.7 and 17.4 %; and CEC 15.4 and 17.1 %, respectively. Applying 6 t compost ha?1 with 34.5–10 kg N–P ha?1 is economically profitable with 844 % MRR.  相似文献   

13.
In many smallholder farming areas southern Africa, the cultivation of seasonal wetlands (dambos) represent an important adaptation to climate change. Frequent droughts and poor performance of rain-fed crops in upland fields have resulted in mounting pressure to cultivate dambos where both organic and inorganic amendments are used to sustain crop yields. Dambo cultivation potentially increases greenhouse gas (GHG) emissions. The objective of the study was to quantify the effects of applying different rates of inorganic nitrogen (N) fertilisers (60, 120, 240 kg N ha?1) as NH4NO3, organic manures (5,000, 10,000 and 15,000 kg ha?1) and a combination of both sources (integrated management) on GHG emissions in cultivated dambos planted to rape (Brassica napus). Nitrous oxide (N2O) emissions in plots with organic manures ranged from 218 to 894 µg m?2 h?1, while for inorganic N and integrated nutrient management, emissions ranged from 555 to 5,186 µg m?2 h?1 and 356–2,702 µg m?2 h?1 respectively. Cropped and fertilised dambos were weak sources of methane (CH4), with emissions ranging from ?0.02 to 0.9 mg m?2 h?1, while manures and integrated management increased carbon dioxide (CO2) emissions. However, crop yields were better under integrated nutrient management. The use of inorganic fertilisers resulted in higher N2O emission per kg yield obtained (6–14 g N2O kg?1 yield), compared to 0.7–4.5 g N2O kg?1 yield and 1.6–4.6 g N2O kg?1 yield for organic manures and integrated nutrient management respectively. This suggests that the use of organic and integrated nutrient management has the potential to increase yield and reduce yield scaled N2O emissions.  相似文献   

14.
Finger millet (Eleusine coracana (L.) Gaertn) is an important food crop of semi-arid to sub-humid Africa where little is known of its response to applied nutrients. Yield responses to nitrogen (N), phosphorus (P) and potassium (K) together with a diagnostic treatment (S, Mg, Zn, B) were determined from field research conducted in western Kenya and eastern and central Uganda. Grain yield was not affected by applied nutrients in some sites in Kenya, likely due to other prevailing stresses. Grain yield increased with N application for all sites and years in Uganda by a mean of 127% from the no N treatment (0 N) yield of 1.00 Mg ha?1. Grain yield increases ranged from 0.76 to 1.40 Mg ha?1 with 30 kg N ha?1 applied, with little added increase with >60 kg N ha?1. The mean economically optimal rate for N in Uganda was 72 and 43 kg N ha?1 with expected net returns to N of 166 and 279 $ ha?1 when the N cost to grain value was 3 and 9 kg kg?1, respectively. Yield was increased with P and K application at two of four production areas of Uganda. Yield was increased by >20% with application of Mg–S–Zn–B in addition to N–P–K for all sites in Uganda with foliar concentrations indicating possible S and B deficiency. There is great profit potential in Uganda, and less for Kenya for N, but not for P and K, application to finger millet. Response to S and B needs further exploration.  相似文献   

15.
In the Seine Basin, characterised by intensive arable crops, most of the surface and groundwater is contaminated by nitrate (NO3 ?). The goal of this study is to investigate nitrogen leaching on commercial arable crop farms in five organic and three conventional systems. In 2012–2013, a total of 37 fields are studied on eight arable crop rotations, for three different soil and climate conditions. Our results show a gradient of soil solution concentrations in function of crops, lower for alfalfa (mean 2.8 mg NO3-N l?1) and higher for crops fertilised after legumes (15 mg NO3-N l?1). Catch crops decrease nitrate soil solution concentrations, below 10 mg NO3-N l?1. For a full rotation, the estimated mean concentrations is lower for organic farming, 12 ± 5 mg NO3-N l?1 than for conventional farming 24 ± 11 mg NO3-N l?1, with however a large range of variability. Overall, organic farming shows lower leaching rates (14–50 kg NO3-N ha?1) than conventional farms (32–77 kg NO3-N ha?1). Taking into account the slightly lower productivity of organic systems, we show that yield-scaled leaching values are also lower for organic (0.2 ± 0.1 kg N kg?1 N year?1) than for conventional systems (0.3 ± 0.1 kg N kg?1 N year?1). Overall, we show that organic farming systems have lower impact than conventional farming on N leaching, although there is still room for progress in both systems in commercial farms.  相似文献   

16.
The DNDC (DeNitrification–DeComposition)-Rice model is one of the most advanced process-based models for estimating greenhouse gas emissions from paddy fields, and can be used to simulate the N balance of a paddy field. In this study, we validated DNDC-Rice using field observation data, including N balance data, and revealed problems when using the model to evaluate a paddy field’s N balance. Using a modified process submodel for fixation of ammonium (NH4 +) ions by clay, DNDC-Rice simulated the dry weight of roots, stems, and grains well, but overestimated leaf dry weight. The normalized root-mean-square errors (nRMSEs) for the root, stem, grain, and leaf dry weights were 13, 16, 7, and 60 %, respectively. DNDC-Rice also overestimated the leaf area index (LAI) and leaf N content, with nRMSEs of 125 and 37 %, respectively. The overestimation of leaf dry weight and LAI resulted from overestimation of N uptake by rice and of N allocation to leaves. The high N uptake might have been caused by a high available soil N content. At harvesting, the simulated N balance (=N input ? N output) was ?38.8 kg N ha?1, which was much lower than the N balance determined by observations and from relevant literature (12.8 kg N ha?1). The underestimation of the N balance resulted mostly from the model’s inability to calculate dry N deposition and N fixation as inputs and from overestimation of grain N uptake as outputs.  相似文献   

17.
With tighter environmental regulations and increasing energy costs over time, approaches to minimize losses from commercially available nitrogen (N) fertilizers have become more critical in recent times. An organically enhanced N fertilizer (OENF), manufactured from organic additives extracted from sterilized biosolids plus ammonium sulfate, was evaluated as an alternative N source relative to commercially available N sources, namely, ammonium sulfate and urea. The formulation was tested on corn in 2012 and 2013 at Jackson and Ames, Tennessee, under no-till and plow lands, respectively. Chemically OENF contains 14.9% N, 4.3% P2O5, 18.1% S, 0.6% Fe, and 3.3% OC. The N fertilizer sources were applied at N rates of 0, 85, 128, and 170 kg ha?1. The P, K, and Zn nutrients were adequately supplied. The OENF and ammonium sulfate produced plant biomass significantly greater than that of urea at N rates of ≥85 kg ha?1. Despite the fact that less P was supplied to the OENF treatments (36% less P), grain yields from the OENF were similar to those from both ammonium sulfate and urea at N rate of ≤128 kg N ha?1, but significantly greater than those from urea at 170 kg N ha?1. The fertilizer type used did not have any significant effects on disease and physical damage to the corn ears at any application rate tested. The OENF could be an alternative N source for crop production and may provide all or some of the P needs for corn production. Therefore, with additional environment benefits of encouraging recycling of municipal and domestic waste and as sources of N, P, S, Fe and organic matter, the use of OENF should be incorporated in various corn production systems.  相似文献   

18.
The aim of this study was to evaluate the cumulative net free-living nitrogen (N) fixation and its response to elevated atmospheric carbon dioxide (CO2) in the submerged surface of paddy soil. The study site was an actual paddy area in central Japan that was equipped with a free-air CO2 enrichment (FACE) facility and was composed of four bays, where each bay had an elevated CO2 plot (FACE plot) and an ambient plot. Field incubation was conducted at subplots without N fertilizer application from May 28 to August 18, 2012 (82 days). The CO2 enrichment was an average of +528 ppm during the study period at the subplots. The changes in total N (TN) content in the surface soil (0–1 cm) were determined in comparison to the initial TN content. The cumulative net N fixations during the 82-day study period were 47.1 ± 3.7 and 43.3 ± 5.8 (standard error) kg N ha?1 in the FACE and ambient plots, respectively. The difference between the FACE and ambient plots was not significant (p = 0.05). However, these values were partly affected by the charophyte blooms, which are not involved in N fixation. The results are not conclusive, and the one bay without charophyte blooming displayed a significant increase in the cumulative net N fixation (approximately 10 kg N ha?1) with CO2 enrichment (p < 0.001).  相似文献   

19.
Nitrogen (N) is an essential element for producing optimum crop yields, but negative responses to high N supply are commonly reported in sweetpotato (Ipomoea batatas) production. This study assessed contrasting responses of sweetpotato yield as a result of N application rates of 0, 30, 60, 90, 130, 160 and 230 kg ha?1 in a glasshouse trial, and rates of 0, 50, 100, 150, 200 and 250 kg ha?1, equivalent to 160, 210, 260, 310, 360 and 410 kg ha?1 when soil N supply is included. The glasshouse-grown sweetpotato produced a maximum number and dry-biomass of storage roots, aboveground biomass and leaf area at 130 kg N ha?1, while leaf N concentration peaked at 90 kg N ha?1. Further increasing N application to 230 kg ha?1 did not result in significant change in any of these attributes. In field-grown sweetpotato, leaf and storage root N concentrations increased with increasing N supply. Although N supply had no effect on the number of storage roots, total yield peaked at 260 kg ha?1. Further increase of N supply reduced the total yield by up to 14% of the maximum yield. With increasing N supply, the glasshouse-grown sweetpotato yield linearly increased with leaf area; the arrangement of the trial permitting light interception to exceed the pot surface area. The yield reduction in field-grown plants was attributed to excess growth of aboveground parts, beyond that needed for efficient light capture. Respirational demand of the aboveground growth occurred at the expense of storage root yields.  相似文献   

20.
The long-term residual effects of K application rates and cultivars for preceding cotton (Gossypium hirsutum L.) on subsequent maize (Zea mays L.) and the influence of N rates applied to preceding cotton and to maize on the residual K effects were examined on maize under no-tillage in the United States. Two field experiments were conducted on a no-till Loring silt loam at Jackson, TN during 1995–2008 with N rates (90 and 179 kg ha?1) × K rates (28, 56, and 84 kg ha?1) and cotton cultivars (determinate and indeterminate) × K rates (56 and 112 kg ha?1) as the treatments, respectively, in the preceding cotton seasons. Maize was planted under no-tillage on the preceding cotton experiments without any K application during 2009 through 2011. The residual effects of K rates applied to preceding cotton on soil K levels were significantly influenced by the N rates applied to preceding cotton and to maize when the data were combined from 2008 to 2011. Relative to the standard N management practices of 168 kg N ha?1 for maize and 90 kg N ha?1 for preceding cotton, the higher N application rate 269 kg N ha?1 to maize and 179 kg N ha?1 to preceding cotton reduced the residual effects of K rates on soil K. However, cultivar for preceding cotton did not affect the residual effects of K fertilizer on soil K fertility, leaf K nutrition, plant growth, or grain yield of subsequent maize on a high K field.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号