首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Genetic parameters for milk yield, contents of fat, total protein, casein and serum protein, individual laboratory cheese yield, and somatic cell counts (SCC) were estimated from 7492 monthly test-day records of 1119 Churra ewes. Estimates were from multivariate REML using analytical gradients (AG-REML) procedures. Except for fat content, estimates for the other routinely recorded traits (milk yield, protein content, and SCC) agreed with those previously obtained in this and other dairy sheep populations. Protein content and composition had the highest heritabilities and repeatabilities. Heritabilities for protein and casein contents were very similar (0.23 and 0.21, respectively), and genetic correlation between the traits was close to unity (0.99). Accordingly, casein content is not advisable as an alternative to protein content as a selection criterion in dairy ewes; it does not have any compelling advantages and costs more to measure. Individual laboratory cheese yield (ILCY) obtained with Churra ewes had a low heritability (0.08), suggesting that potential for selection for this parameter would be possible but is not recommended. All correlations with ILCY were high and positive except for milk yield. A high SCC was accompanied by an increase in serum protein content and involved a loss in milk yield.  相似文献   

2.
We investigated whether the inhibition of milk ejection during and/or between machine milkings is responsible for the low milk fat observed in commercial milk obtained from dairy ewes managed with a mixed system (MIX) of partial daily suckling (10 h) and once daily machine milking (after 14 h of udder filling). East Friesian crossbred dairy ewes were randomly allocated postpartum to the MIX system (n = 9) or to exclusive twice-daily machine milking (DY1, n = 8). Following wk 4, MIX ewes were permanently weaned from their lambs and milked twice daily. All ewes were injected with saline, oxytocin, or an oxytocin-receptor antagonist prior to three morning milkings during wk 2,4, and 6 of lactation to study cisternal and alveolar milk distribution. Overall milk yield (cisternal + alveolar) for MIX ewes was 42% greater than for DY1 ewes during wk 2 and 4, which demonstrates the beneficial effect of lamb suckling on milk production of dairy ewes. However, during normal machine milking, only the cisternal fraction was obtained from MIX ewes, confirming that milk ejection did not occur for as long as these ewes remained in partial daily contact with their lambs. Although the volume of milk stored within the cistern, and its concentration of milk protein was similar for the two weaning systems, milk of MIX ewes was significantly inferior in cisternal milk fat concentration and yield compared to DY1 ewes. This provides evidence that not only is there inhibition of milk ejection during machine milking of MIX ewes, there is additional inhibition of transfer of milk fat, but not milk protein, from the alveoli to the cistern during the evening when MIX ewes a reseparated from their lambs. Following weaning of MIX ewes, the majority of lactation traits studied were similar compared to DY1 ewes.  相似文献   

3.
The experiment was conducted from March to July 2002 using 5 intensively managed flocks of Southern Italy. In each flock, 2 groups of 50 ewes were created. The groups were designated LSCC (low somatic cell count [SCC]) when their milk SCC was lower than 500,000/mL and HSCC (high SCC) when their milk SCC was higher than 1,000,000/mL. Bulk milk and whey samples were analyzed for fat, total protein, lactose, casein, and whey protein contents. Renneting properties of milk were also determined. Moisture, NaCl, and nitrogen fractions were determined in fresh cheese curds. In addition, plasmin (PL) and plasminogen (PG) activities in milk and cheese were monitored. The proteolytic activity of plasmin by urea-polyacrylamide gel electrophoresis and the white blood cell (WBC) differentials were determined. The HSCC resulted in higher pH values in milk and in higher moisture and lower fat contents in fresh cheese curds. Moreover, a lower recovery of fat and whey proteins was obtained from the HSCC than from the LSCC raw milk. The crude protein and casein contents were higher in the HSCC than in the LSCC curds during early and midlactation; an opposite trend was observed in late lactation. Plasmin and PG activities underwent more marked fluctuations in the LSCC than in the HSCC curds through lactation. The results of this experiment demonstrate that the PL activity in ewe milk is markedly influenced by the SCC, although SCC is not the only parameter for predicting PL and PG evolution in ewe milk. The LSCC milk resulted in a higher proteolytic potential of Canestrato pugliese cheese curds.  相似文献   

4.
East Friesian crossbred ewes (n = 99) and their lambs (n = 232) were used to study the effects of three weaning systems on milk production and lamb growth. Prior to parturition, a ewe and her lambs were assigned to one of the following three treatments for the first 28 +/- 3 d of lactation: 1) ewes weaned from their lambs at 24 h postpartum, ewes machine milked twice daily, and their lambs raised artificially (DY1); or 2) beginning 24 h postpartum, ewes separated from their lambs for 15 h during the evening, ewes machine milked once daily in the morning, and their lambs allowed to suckle for 9 h during the day (MIX); or 3) ewes not machine milked and exclusively suckled by their lambs (DY30). After the treatment period, lambs were weaned from MIX and DY30 ewes, and all three groups were machine milked twice daily. Daily commercial milk yield and milk composition were recorded weekly or twice monthly, and lambs were weighed at weaning or at 28 d and at approximately 120 d of age. Average lactation length (suckling + milking period) was 183 +/- 5 d and was similar among weaning systems. Differences among weaning systems for milk yield, milk fat and protein percentages, and somatic cell count were highly significant prior to and around weaning, and became nonsignificant by 6 wk in lactation. Total commercial milk production was greatest for DY1 and MIX ewes (261 +/- 10 and 236 +/- 10 kg/ewe, respectively) and least for DY30 ewes (172 +/- 10 kg/ewe). Daily gain of lambs to 30 d and weight at 30 d were similar regardless of weaning system; however, by 120 d, DY30 lambs tended to be heaviest, MIX lambs intermediate, and DY1 lambs lightest (47.3 +/- 1.6, 45.9 +/- 1.8, and 43.7 +/- 1.2 kg, respectively). Overall financial returns for milk and lamb sales were greatest for the MIX system because of the increase in marketable milk during the first 30 d of lactation compared with the DY30 system and because of acceptable 120-d lamb weights without the expenses of artificial rearing compared with the DY1 system. A mixed system of suckling and milking during early lactation appears to be a valuable management tool for dairy sheep production.  相似文献   

5.
《Journal of dairy science》2019,102(10):8648-8657
In dairy goats, very little is known about the effect of the 2 most important indirect indicators of udder health [somatic cell count (SCC) and total bacterial count (TBC)] on milk composition and cheese yield, and no information is available regarding the effects of lactose levels, pH, and NaCl content on the recovery of nutrients in the curd, cheese yield traits, and daily cheese yields. Because large differences exist among dairy species, conclusions from the most studied species (i.e., bovine) cannot be drawn for all types of dairy-producing animals. The aims of this study were to quantify, using milk samples from 560 dairy goats, the contemporary effects of a pool of udder health indirect indicators (lactose level, pH, SCC, TBC, and NaCl content) on the recovery of nutrients in the curd (%REC), cheese yield (%CY), and daily cheese yields (dCY). Cheese-making traits were analyzed using a mixed model, with parity, days in milk (DIM), lactose level, pH, SCC, TBC, and NaCl content as fixed effects, and farm, breed, glass tube, and animal as random effects. Results indicated that high levels of milk lactose were associated with reduced total solids recovery in the curd and lower cheese yields, because of the lower milk fat and protein contents in samples rich in lactose. Higher pH correlated with higher recovery of nutrients in the curd and higher cheese yield traits. These results may be explained by the positive correlation between pH and milk fat, protein, and casein in goat milk. High SCC were associated with higher recovery of solids and energy in the curd but lower recovery of protein. The higher cheese yield obtained from milk with high SCC was due to both increased recovery of lactose in the curd and water retention. Bacterial count proved to be the least important factor affecting cheese-making traits, but it decreased daily cheese yields, suggesting that, even if below the legal limits, TBC should be considered in order to monitor flock management and avoid economic losses. The effect of NaCl content on milk composition was linked with lower recovery of all nutrients in the curd during cheese-making. In addition, high milk NaCl content led to reductions in fresh cheese yield and cheese solids. The indirect indicators of the present study significantly affected the cheese-making process. Such information should be considered, to adjust the milk-to-cheese economic value and the milk payment system.  相似文献   

6.
Cheese yield is strongly influenced by the composition of milk, especially fat and protein contents, and by the efficiency of the recovery of each milk component in the curd. The real effect of milk composition on cheesemaking ability of goat milk is still unknown. The aims of this study were to quantify the effects of milk composition; namely, fat, protein, and casein contents, on milk nutrient recovery in the curd, cheese yield, and average daily yield. Individual milk samples were collected from 560 goats of 6 different breeds. Each sample was analyzed in duplicate using the 9-laboratory milk cheesemaking assessment, a laboratory method that mimicked cheesemaking procedures, with milk heating, rennet addition, coagulation, curd cutting, and draining. Data were submitted to statistical analysis; results showed that the increase of milk fat content was associated with a large improvement of cheese yield because of the higher recovery of all milk nutrients in the curd, and thus a higher individual daily cheese yield. The increase of milk protein content affected the recovery of fat, total solids, and energy in the curd. Casein number, calculated as casein-to-protein ratio, did not affect protein recovery but strongly influenced the recovery of fat, showing a curvilinear pattern and the most favorable data for the intermediate values of casein number. In conclusion, increased fat and protein contents in the milk had an effect on cheese yield not only for the greater quantity of nutrients available but also for the improved efficiency of the recovery in the curd of all nutrients. These results are useful to improve knowledge on cheesemaking processes in the caprine dairy industry.  相似文献   

7.
Forty-eight Manchega dairy ewes were used during a complete lactation in a 2 x 2 factorial design to determine the effects of supplementing diets with fat (calcium soaps of palm oil fatty acids, CSFA) and rumen undegradable protein (RUP) on milk production and composition. Factors tested were amounts of CSFA (0 or 200 g/kg) and RUP (300 or 450 g/kg crude protein) in the concentrate. RUP was altered by adding a mixture of maize gluten meal and blood meal. Lactation was divided into one nursing period (period 1, weeks 1-4), and three milking periods (periods 2-4, weeks 5-8, 9-14 and 15-21). Concentrates were given at 0.8 kg/d during periods 1 and 2, and at 0.6 kg/d in periods 3 and 4. Ewes grazed rotationally in an Italian rye-grass pasture and received a daily supplement of 0.8 kg vetch-oat hay during period 1, and 0.3 kg lucerne hay during periods 2-4. For the whole lactation, supplemental fat markedly increased milk fat content (+23%) and yield (+16%), and decreased milk protein content (-9%). The positive effect of feeding CSFA on milk fat content was more evident at the beginning of lactation; however, its negative effect on milk protein was more pronounced in late lactation. Supplementary RUP had little effect, increasing milk protein content only in period 3, when the crude protein content of pasture was lower. Milk yield and lamb growth were not affected by dietary treatments. The results indicated that CSFA can be useful for increasing the milk fat content of dairy ewes at pasture, which may help farmers to produce milk reaching the minimum requirements of fat content for the cheese industry.  相似文献   

8.
The aim of this work was to quantify, on a half-udder basis, the changes in ewe milk yield and composition caused by unilateral subclinical mastitis within the current lactation. Fluctuations due to production level, infection severity, time from the onset of infection, and lactation curves were also studied. Yield and composition of milk from half-udders of unilateral infected ewes were compared between them and with a set of healthy halves using a mixed model. The experiment was completed with a whole-udder approach on the same animals. To test the effect of intramammary infection (IMI) in the 7 wk following the onset of infection, 20 ewes that acquired unilateral subclinical mastitis during lactation and 40 healthy ewes were used. Another group of 20 unilaterally infected ewes from wk 1 of lactation and other 40 healthy ewes were studied to test the effect of IMI on lactational milk yield and composition. The individual milk loss in ewes infected during lactation was 15% for the 7 wk following the onset of infection, and 6.6% more milk was produced by the uninfected half to compensate milk lost by the infected half. Lactational milk yield loss in ewes infected from wk 1 postpartum was 17%. The changes in milk yield were noticed from the week of infection diagnosis. The production level of animals influenced the milk yield changes caused by IMI in such a way that the more productive ewes lost more milk, although these losses were proportional to their production level. On the other hand, infection severity affected milk loss between glands, being more pronounced as somatic cell count increased. A clear decrease of lactose content and casein:protein ratio due to subclinical IMI was observed and it remained throughout the postinfection period. Improving udder health status is necessary to maintain milk production and quality in dairy ewes during lactation.  相似文献   

9.
Effects of dietary fat on milk composition, particularly milk N, were evaluated in lactating dairy cows at two stages of lactation. Complete mixed diets containing 0, 3.5, or 7% of the diet DM as animal fat were fed to 12 cows in a 3 X 3 Latin square. Cows were divided into two status categories based on stage of lactation resulting in two squares of early and two of late lactation cows. Percentages of fat, solids, lactose, and protein were decreased and ash increased in the milk of cows fed the 7% fat diet. Percent of casein N was elevated while nonprotein N was depressed by fat fed in diet. Percentage of solids and protein was higher and lactose lower for cows in late lactation than for those in early lactation. Dietary fat reduced the proportion of short-chain fatty acids in milk fat and increased C18:0 and C18:1 fatty acids. Digestibility of DM, energy, and fiber was not significantly affected by dietary fat, but estimates decreased with increased dietary fat. Cows in late lactation had a higher digestibility of dietary fractions than early lactation cows even though intakes of DM were similar.  相似文献   

10.
A mass balance optimization model was developed to determine the value of the κ-casein genotype and milk composition in Cheddar cheese and whey production. Inputs were milk, nonfat dry milk, cream, condensed skim milk, and starter and salt. The products produced were Cheddar cheese, fat-reduced whey, cream, whey cream, casein fines, demineralized whey, 34% dried whey protein, 80% dried whey protein, lactose powder, and cow feed. The costs and prices used were based on market data from March 2004 and affected the results. Inputs were separated into components consisting of whey protein, ash, casein, fat, water, and lactose and were then distributed to products through specific constraints and retention equations. A unique 2-step optimization procedure was developed to ensure that the final composition of fat-reduced whey was correct. The model was evaluated for milk compositions ranging from 1.62 to 3.59% casein, 0.41 to 1.14% whey protein, 1.89 to 5.97% fat, and 4.06 to 5.64% lactose. The κ casein genotype was represented by different retentions of milk components in Cheddar cheese and ranged from 0.715 to 0.7411 kg of casein in cheese/kg of casein in milk and from 0.7795 to 0.9210 kg of fat in cheese/kg of fat in milk. Milk composition had a greater effect on Cheddar cheese production and profit than did genotype. Cheese production was significantly different and ranged from 9,846 kg with a high-casein milk composition to 6,834 kg with a high-fat milk composition per 100,000 kg of milk. Profit (per 100,000 kg of milk) was significantly different, ranging from $70,586 for a high-fat milk composition to $16,490 for a low-fat milk composition. However, cheese production was not significantly different, and profit was significant only for the lowest profit ($40,602) with the κ-casein genotype. Results from this model analysis showed that the optimization model is useful for determining costs and prices for cheese plant inputs and products, and that it can be used to evaluate the economic value of milk components to optimize cheese plant profits.  相似文献   

11.
Over a 14-month period, bulk tank milk was collected twice a week and was adjusted with cream and skim milk powder to provide six levels each of fat and protein varying from 3·0 to 4·0%. Milk samples were analyzed for total solids, fat, protein, casein, lactose and somatic cell count and were used for laboratory-scale cheesemaking. Data obtained from the milk input and the cheese output were used to determine actual, moisture adjusted, theoretical yield, and efficiency of yield. Least squares analyses of data indicated that higher cheese yields were obtained from higher fat and protein contents in milk. Higher yield efficiency was associated with higher ratios of protein to fat and casein to fat. Regression analysis indicated that a percentage increase in fat content in milk resulted in an increase of 1·23–1·37% in moisture adjusted yield in the different protein levels. For a similar increase of protein in milk, there were 1·80–2·04% increase in moisture adjusted yields in different fat levels.  相似文献   

12.
Bulk tank milk was standardised to six levels of fat (3·0, 3·2, 3·4, 3·6, 3·8, 4·0%) and similarly to six levels of protein, thus giving a total of 36 combinations in composition. Milk was analyzed for total solids, fat, protein, casein, lactose and somatic cell count and was used to make laboratory-scale cheese. Cheese samples from each batch were assayed for total solids, fat, protein and salt. Losses of milk components in the whey were also determined. Least squares analysis of data indicated that higher protein level in milk was associated with higher protein and lower fat contents in cheese. This was accompanied by lower total solids (higher moisture) in cheese. Inversely, higher fat level in milk gave higher fat and lower protein and moisture contents in cheese. Higher fat level in milk resulted in lower retention of fat in cheese and more fat losses in the whey. Higher protein level in milk gave higher fat retention in cheese and less fat losses in the whey. Regression analysis showed that cheese fat increased by 4·22%, while cheese protein decreased by 2·61% for every percentage increase in milk fat. Cheese protein increased by 2·35%, while cheese fat decreased by 6·14% per percentage increase in milk protein. Milk with protein to fat ratio close to 0·9 would produce a minimum of 50% fat in the dry matter of cheese.  相似文献   

13.
The Assaf breed of dairy sheep, a stabilized cross of the Awassi and East Friesian breeds, has replaced the Awassi as the breed of choice in its country of origin, Israel, and has spread to other Mediterranean countries. In Israel the Assaf breed is managed under an intensive production system involving weaning lambs at birth, rearing them artificially, and milking ewes after parturition. There are several breeding periods in the year when ewes are mated following hormonally synchronized estrus. Records of 18,976 lactations from 5 farms were analyzed to investigate factors that influenced Assaf milk and reproductive performance. Lactation curves were fitted to each lactation, and a range of parameters and calculated values were analyzed. Daily milk yield records also were analyzed to describe a typical Assaf lactation and compared with those of the Awassi breed. Factors affecting age at first lambing also were studied. An average Assaf ewe kept under this intensive management regimen was found to produce 334 L of milk during a 173-d lactation. Mean litter size was 1.57 lambs/ewe lambing, and lambing interval was 272 d. Milk production was affected by litter size, with twin- and triplet-bearing ewes producing approximately 20 L more milk per lactation than single-bearing ewes. Day length was the major environmental variable influencing milk yield. The difference between midsummer and midwinter day lengths accounted for a difference in daily milk yield of 0.44 L in favor of summer. Ewe lambs that were mated for the first time at later ages produced more lambs and more milk due to greater early lactation characteristics. Milk production was found to be negatively associated with subsequent reproductive performance. Comparing these results with those from an earlier study in the Awassi breed, the Assaf was found to produce less milk during a shorter lactation than the Awassi, but its greater litter size made it a more profitable breed.  相似文献   

14.
Automatic in-line measurement of milk composition and milk yield could be a useful tool in management of the dairy herd. Data on milk components and milk yield provide information on milk quality alterations and cow health status but are also useful in planning feeding and breeding. In automatic milking systems, udder quarters are milked individually, enabling analysis and recording at the udder-quarter level. Frequent records of components require knowledge about day-to-day variations. A component with greater day-to-day variation needs more frequent sampling when used as a diagnostic tool and for management decisions. Earlier studies have described the day-to-day variations in milk components for cow composite milk, but with the quarter milking technique and the possible sampling at the udder-quarter level, knowledge about day-to-day variations at the udder-quarter level is needed. In this study, udder-quarter and cow composite milk samples were collected from 42 consecutive milkings of 10 cows during 21 d. Milk yield was recorded and the milk was analyzed for total protein, whey protein, casein, fat, lactose, and somatic cell count. The results showed that the day-to-day variations and mean values for 4 healthy udder quarters within a cow were similar. In addition, different milk components had different levels of day-to-day variation, the least variation being found in lactose (0.9%) and the greatest in fat (7.7%). This suggests that repeated milk sampling and analysis at the udder-quarter level can be used to detect alterations in composition and cow health and would, thus, be helpful in the management of the dairy herd.  相似文献   

15.
Twenty-four lactating ewes (Manchega, n = 12; Lacaune, n = 12) in mid lactation were used to assess the short-term effects of different machine milking intervals (4, 8, 12, 16, 20, and 24 h) on milk yield, milk composition, and tight junction (TJ) permeability of mammary epithelia. Milk samples were analyzed for chemical composition, somatic cell count (SCC), and plasmin activity. Plasma lactose, and milk Na and K concentrations were used as indicators of TJ permeability. Milk accumulated linearly for up to 24 h, showing a different rate according to the milk yield of the breed (Manchega, 38 mL/h; Lacaune, 87 mL/h). Milking interval affected milk fat content, which decreased markedly from 4 to 24 h in both breeds, but no differences were observed in milk protein content. The milk contents of casein, true protein, lactose, and total solids also varied according to milking interval. Values of SCC did not vary by breed (175 × 103 cells/mL, on average), showing the lowest log10 values for the 4-and 24-h milking intervals in both breeds. Plasmin activity in milk increased with milking interval until 20 h of udder filling in both breeds, and was poorly but positively correlated with SCC content (r = 0.39). Plasma lactose increased dramatically after 20 h of milk accumulation, indicating enhanced permeability of mammary TJ. As a result, an increase in Na concentration and in the Na:K ratio, and a decrease in K concentration, were observed in the milk of Manchega ewes. On the contrary, no differences in Na and K concentrations in milk were detected in Lacaune ewes. In conclusion, our results proved that Manchega and Lacaune dairy sheep could maintain high rates of milk secretion during extended milking intervals in the short term, with no effects on udder health and few negative effects on milk yield. Increased TJ permeability, caused by the effect of udder filling, induced changes in milk composition that were more marked in Manchega than in Lacaune ewes.  相似文献   

16.
A hard-pressed, brined cheese was produced from frozen ovine milk collected in February, May, and August. Solids in the milk decreased as the season progressed. This was a result of high solids in early-lactation milk and low solids in August milk because of hot weather and poorer quality pastures. Casein as a percentage of true protein and the casein to fat ratio were higher in May and August milk. Fat in the cheese from February milk was higher and total protein was lower than in May and August. Milk, whey, and press whey composition were influenced by season and followed the trends of milk composition. Fat recovery in the cheeses ranged from 83.2 to 84.2%. Protein recovery in the cheeses was not affected by season. Cheese yield from February milk was higher than from May and August milk and was a result of higher casein and fat in the milk.  相似文献   

17.
The objective of this study was to examine the synthesis and composition of milk produced by dairy cows that secrete either small milk fat globules (SMFG) or large milk fat globules (LMFG), and to study their response to diets known to alter milk composition. Four groups of 3 multiparous dairy cows were assigned to 2 isoenergetic feeding treatments: a corn silage treatment supplemented with soybean meal, and fresh pasture supplemented with cereal concentrate. The 4 groups comprised 2 groups of 3 dairy cows that produced SMFG (3.44 μm) and 2 groups of 3 dairy cows that produced LMFG (4.53 μm). The SMFG dairy cows produced higher yields of milk, protein, and calcium. Nevertheless, their milk had lower fat and protein contents. Both SMFG and LMFG cows secreted similar amounts of milk fat; therefore, higher globule membrane contents in milk fat were observed in SMFG cows. Higher calcium mineralization of the casein micelles in SMFG cows suggests that it may be possible to improve cheese-making properties even if the lower protein content may lead to lower cheese yields. The SMFG cows secrete milk fat with a higher concentration of monounsaturated fatty acids and a lower concentration of short-chain fatty acids. They also have a higher C18:1/C18:0 ratio than LMFG cows. This suggests that SMFG cows have more significant fatty acid elongation and desaturation. The pasture treatment led to an increase in milk and protein yields because of increased energy intake. It also resulted in lower milk fat yield and fat and protein contents. The pasture treatment led to a decrease in milk fat globule size and, as expected, an increase in monounsaturated and polyunsaturated fatty acid contents. However, it induced a decrease in the protein content, and in calcium mineralization of casein micelles, which suggests that this type of milk would be less suitable for making cheese. This study also shows that there is no correlation between the cows, based on milk fat globule size and diet. These results open up possibilities for improving milk fat quality based on milk fat globule size, and composition. The mechanisms involved in milk fat globule secretion are still to be determined.  相似文献   

18.
Six adult West African dwarf does, about 2 1/2 years old and weighing from 24 to 29 kg, were kept for 18 weeks/lactation, and for 2 lactation periods in all. During these periods the does were hand-milked twice daily and the daily samples were bulked for each animal for subsequent analysis. Milk yields for the period were low. Colostrum was characterized by a high content of total solids of 19-2%, fat 8-3%, total protein 5-1% and a gross energy of 517 kJ/100 g milk, but a low lactose content of 4-9%. The composition tended to approach that of mature goat milk between the second and third d after parturition. The mature goat's milk contained higher mean percentages of fat (6-9) and lactose (6-3) than any temperate breeds of goats and indigenous dairy cattle, but their protein (3-9%) and total ash (0-8%) contents were comparable with any temperate breeds of goats. The percentage protein, lactose, fat and total solids declined slightly with advance in lactation and there was a steady fall in milk yield which was statistically significant (P less than 0-01).  相似文献   

19.
The long- and the short-term effects of omitting 2 milkings weekly in early (wk 8 to 14) and mid lactation (wk 15 to 22) were investigated in an experiment conducted with a total of 58 dairy ewes (40 Manchega and 18 Lacaune). Ewes submitted to 2 milking omissions were milked twice daily from Monday to Friday (0800 and 1800 h), and once daily on Saturday and Sunday (1600 and 1400 h, respectively). Individual data were collected for milk yield (weekly), milk composition (biweekly), and somatic cell count (SCC; monthly). Omitting 2 milkings per week in early lactation tended to decrease milk yield in Manchega ewes (−15%), whereas no effects were observed in Lacaune ewes. Averaged milk composition was not modified by milking omissions in either breed. Milking omissions in late lactation did not affect milk yield and milk composition in either breed. The SCC were unaffected by milking omissions in both breeds and in both stages of lactation. A sample of 22 Manchega and 11 Lacaune ewes were used to evaluate the short-term (daily) effects of the 2 milking omissions per week on milk yield and composition, udder health, and tight junction permeability, both in early lactation (wk 12) and in mid lactation (wk 20). Milking omission decreased milk yield, milk fat, and milk lactose contents on the first omission day in both breeds, with losses being more noticeable in early lactation than in mid lactation. Milk protein content and SCC did not vary by effect of the weekend milking omissions. After restoring the twice-daily milking routine on Monday, milk yield showed a compensatory increase that was greater in the large-cisterned than in the small-cisterned ewes, which allowed milk yield to return to Friday values in both breeds. Milk fat content increased during Sunday and Monday, reestablishing Friday values thereafter in both breeds. Weekend milking omissions in early lactation caused tight junction leakiness in both breeds, but mammary epithelia adapted to extended milking intervals when applied successively, recovering their tight state after milking. In mid lactation, the mammary tight junction showed leakiness only in Manchega ewes. In conclusion, 2 milkings per week could be omitted with no negative effects on milk yield, milk composition, and milk SCC values in large-cisterned dairy ewes, as observed in Lacaune and large-cisterned Manchega ewes. Losses in milk yield could be reduced if milking omissions were done from mid lactation in small-cisterned ewes.  相似文献   

20.
Long photoperiods during established lactation increase milk production in dairy cattle and dairy sheep, but recent research in cattle and dairy goats suggests an additional influence of prepartum day length on milk yield in the subsequent lactation. The proposed mechanism of function is the level and role of circulating prolactin in mammary development. The objectives of this study were to evaluate the effect of prepartum photoperiod on milk production, milk composition, and prolactin concentration of 22 multiparous dairy ewes exposed to short day prepartum photoperiod (SDPP; 8 h of light:16 h of dark) or long day prepartum photoperiod (LDPP; 16 h of light:8 h of dark) for at least 6 wk prepartum. During the first 8 wk of lactation, SDPP ewes tended to produce more milk than LDPP ewes (2.43 vs. 2.29 kg/d, respectively), and the milk of SDPP ewes had a greater fat percentage than that of LDPP ewes (6.04 vs. 5.51%, respectively). Due to daily milk yield and greater fat content, SDPP ewes produced more 6.5% fat-corrected milk (+0.30 ± 0.08 kg/d) and 6.5% fat- and 5.8% protein-corrected milk (+0.28 ± 0.08 kg/d) than LDPP ewes. For the lactation period of 180 d, SDPP ewes produced more test day milk than LDPP ewes (1.76 vs. 1.60 ± 0.05 kg/d, respectively), but there were no differences in milk fat or protein percentages. Ewes in both treatments experienced a prolactin surge at lambing, but SDPP ewes had lower circulating prolactin concentration than LDPP ewes from 4 to 0.5 wk before lambing (14.7 vs. 51.3 ± 4.2 mg/dL, respectively). These data suggest that decreased prepartum photoperiod may be important for increasing milk production in dairy ewes and may provide a management strategy for dairy sheep producers to increase milk yield.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号