首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this paper we present long-reach fiber access links supporting transmission of Worldwide Interoperability for Microwave Access (WiMAX) compliant signals. We present bi-directional full-duplex transmission of 256-state quadrature amplitude modulation (256-QAM) modulated WiMAX-compliant signals on a 2.4-GHz RF carrier over an 80-km long-reach access link at 100 Mb/s (down) and 64 Mb/s (up). Transmission of 64-QAM and 256-QAM-modulated signals on a 5.8-GHz RF carrier over a 118.8-km access link converged with four baseband differential quadrature phase shift keying (DQPSK) modulated wireline channels, along with ultra-wide band (UWB) and phase shift keying (PSK) radio-over-fiber (RoF) wireless signals over a deployed optical fiber link is also presented.  相似文献   

2.
This paper presents a single-chip dual-band CMOS direct-conversion transceiver fully compliant with the IEEE 802.11a/b/g standards. Operating in the frequency ranges of 2.412-2.484 GHz and 4.92-5.805 GHz (including the Japanese band), the fractional-N PLL based frequency synthesizer achieves an integrated (10 kHz-10 MHz) phase noise of 0.54/spl deg//1.1/spl deg/ for 2/5-GHz band. The transmitter error vector magnitude (EVM) is -36/-33 dB with an output power level higher than -3/-5dBm and the receiver sensitivity is -75/-74 dBm for 2/5-GHz band for 64QAM at 54 Mb/s.  相似文献   

3.
Investigations are carried out on the performance of video transmission systems employing square wave frequency modulation (SWFM). A simple formula for the signal-to-noise ratio (SNR) in the SWFM video transmission systems is derived. The SNR performance is compared to that of frequency modulation (FM) and pulse frequency modulation (PFM). SWFM is shown to display the greatest receiver sensitivity when the fiber 6 dB bandwidth is less than 100 MHz. Video transmission experiments demonstrate the advantages of the SWFM, including 1) degree of simplicity in modulation/demodulation circuits as well as in optical transmitter and receiver circuits, 2) tolerance to nonlinearities in the system, and 3) insensitivity to the fiber baseband frequency-phase characteristics. Both the theoretical and experimental results have made clear the superiority of SWFM optical video transmission systems in application to CATV distribution systems and subscriber loop systems.  相似文献   

4.
This paper describes a fully integrated digital-spread spectrum transceiver chip fabricated through MOSIS in 1.2 μm CMOS. It includes a baseband spread spectrum transmitter and a coherent intermediate frequency (IF) receiver consisting of a Costas loop, an acquisition loop for the pseudo-noise (PN) sequence, and a clock recovery loop with a 406.4 MHz onchip numerically controlled oscillator (NCO). The transceiver is capable of operating at a maximum IF sampling rate of 50.8 MS/s and a maximum chip rate of 12.7 R Mchips/s (Mcps) with selectable data rates of 100, 200, 400, and 800 kbps. At the maximum operating speed of 50.8 R MS/s, it dissipates 1.1 W. In an additive white Gaussian noise channel the IF receiver achieves a receiver output SNR within 1 dB of theory and can acquire code with a wide range of input SNR from -17 dB to over 30 dB. The transceiver chip has been interfaced to an RF up/down converter to demonstrate a wireless voice/data/video link operating in the 902-928 MHz band  相似文献   

5.
Using ultra-high-speed electroabsorption modulator (EAM) devices for RF/optic conversion, we fabricated system-on-packaging (SOP) transmitter (Tx) modules and characterized their performance in 60-GHz RF/radio-over-fiber (ROF) applications. Both an EAM and low-noise amplifiers (LNAs) were co-packaged with internal bias circuits into a butterfly-type metal housing. At the EAM temperature, $T {sim} {hbox{25}}~^{circ}$ C and the EAM reverse bias, $V_{R} {sim} $1.6 V was the largest RF gain obtained that was very susceptible to the change of $T$ . The impedance matching in the 60-GHz band was accomplished with both a microstrip-line bandpass filter and a 500- $Omega$ shunt resistor, which defined the 2-GHz passband of the SOP transmitter. In 60-GHz two-tone experiments, we observed that the spurious free dynamic range of an SOP module with two LNAs was 78 dB $cdot$ Hz $^{2/3}$ while that of the narrowband EAM module showed 82 dB $cdot$ Hz$^{2/3}$. In contrast, the noise figure exhibited a large reduction of up to 30 dB for the SOP module compared with the narrowband EAM module. Using the SOP Tx module, we achieved successful transmission of commercial high-definition digital CATV signals in 64-quadrature amplitude modulation (QAM) format through the 60-GHz RF/ROF link. The total throughput of the link was estimated to be 6.5 Gb/s.   相似文献   

6.
A novel scheme for the simultaneous transmission of 1.25-Gb/s baseband (BB) signals and 155-Mb/s 60-GHz radio-over-fiber (RoF) signals is experimentally demonstrated. The BB and RoF signals are wavelength-interleaved and polarization multiplexed. Tunable filtering along with polarization demultiplexing are used to drop an RoF signal with the wavelength-interleaved BB signal. This scheme is suited for future reconfigurable ring/bus access networks to provide an integrated platform for BB and millimeter-wave services.  相似文献   

7.
A full-duplex 60-GHz radio-over-fiber (RoF) system using novel optical local oscillating (LO) carrier distribution scheme to reduce the system cost and realize centralized management is proposed and experimentally demonstrated. In the proposed scheme, the optical LO carriers for producing remote electrical LO signals at the base stations (BSs) are generated together with the downlink RoF carriers at the central station (CS) via four-wave-mixing effect in semiconductor optical amplifier, and are then distributed to the BSs along with the downlink RoF signals. By down-converting the 60-GHz-band uplink signal with the remotely produced 60-GHz LO signal and reusing the optical LO carriers as the uplink optical source, only a cost-effective intermediate frequency modulator is required at each BS to transmit the uplink signal, which will dramatically reduce the whole system budget due to a large amount of BSs. Moreover, the operating frequency of each BS can be controlled remotely at the CS end to realize centralized management and convenient reconfiguration. Using the proposed scheme, 622-Mb/s signals for both directions are successfully transmitted over a 20-km single-mode fiber link and a 50-cm wireless channel with less than 0.1- and 0.2-dB power penalty for downlink and uplink, respectively.   相似文献   

8.
We propose and experimentally investigate a scheme for transmitting a phase-modulated radio-over-fiber (RoF) signal along an existing fiber infrastructure without degradation of the existing baseband signal. Optical phase encoding of both signals, namely a baseband 21.4-Gb/s nonreturn-to-zero differential quaternary phase-shift keyed signal and a 5.25-GHz RoF carrying 1.25 Gb/s, enables the use of identical optical receiver structures. The experimental results show that both receivers achieve error-free operation after 80-km standard single-mode fiber transmission. The proposed scheme has potential applications for converged wireless and wireline optical access networks.   相似文献   

9.
In this paper, a 60-GHz photonic millimeter-wave link system for short- to medium-range broadband wireless data transmission is investigated. The system employs advanced mm-wave photonic components and radio-over-fiber (RoF) techniques for the generation of a DSB-SC optical mm-wave carrier and its subsequent on-off-keying modulation and transmission. For short-range applications, we have constructed a compact wireless RoF transmitter consisting of a high-frequency photodiode and a mm-wave antenna only. This system achieved error-free ($hbox {BER}=10^{-9}$, $2^{31}-1$ PRBS, NRZ) in-door transmission of 12.5-Gb/s signals over wireless distances up to 3.1 m with a receiver sensitivity as low as $-$ 45.4 dBm . For fixed wireless access (FWA) requiring a bit error rate of $10^{-4}$, the maximum transmission distance for 12.5 Gb/s is increased up to 5.8 m. For medium-range broadband wireless transmission an electrical radio-frequency (RF) amplifier was employed in the RoF transmitter. Here we achieved 7.5-Gb/s error-free transmission in out-door line-of-sight experiments over wireless distances of up to 36 m. Based upon the experimental results, we expect that the maximum wireless distance the system could accommodate for 12.5 Gb/s is in the kilometer range when using high-gain antennas and an RF transmitter amplifier with a sufficient bandwidth.   相似文献   

10.
A system-on-packaging (SoP) with an electroabsorption modulator (EAM) for a 60 GHz band radio-over-fiber (RoF) link is described. The system consists of an EAM device, a microstrip filter, and a low noise amplifier (LNA). The microstrip filter was used to achieve impedance matching between the EAM device and the LNA and to reject the local oscillator (LO) frequency of the heterodyne system. The frequency response and the effect of the EAM bias voltage were measured for a simple RF/optical link. A 60 GHz band RoF link with 2.5 GHz intermediate frequency (IF) was prepared to measure the transmission characteristics of the 16 QAM data.  相似文献   

11.
Subcarrier multiplexed transmission of multimedia radio signals over fiber is often done to deliver broadband services cost effectively. These signals need to be demultiplexed, preferably in the optical domain, to avoid loss and noise due to optical-to-electrical conversion. However, it is challenging to optically isolate signals at subgigahertz range due to the need for very narrow optical bandpass filters with high selectivity and low insertion loss and distortion. We developed such a novel subpicometer all-optical bandpass filter by creating a resonance cavity using two closely matched fiber Bragg gratings. This filter has a bandwidth of 120 MHz at -3 dB, 360 MHz at -10 dB, and 1.5 GHz at -20 dB. Experimental results show that this filter optically separates two RF signals spaced as close as 50 MHz without significant distortion. This paper analytically and experimentally investigates the scenario when this filter was used with 2.4-GHz (wireless local area network) and 900-MHz (cellular wireless) radio signals. The bit-error rate of the underlying baseband data is related to the linearity and isolation of the filter.  相似文献   

12.
A high performance analog front-end (AFE) for broadband powerline communication between 1.6 and 60 MHz is presented. The frequency division multiplexing AFE supports optimum channel selection, avoids disturbing RF signals and allows co-existence with other users of the spectrum. The direct-conversion receiver operates linearly up to a + 18 dBm input level. Tunable low-pass filters, integrated into the receive path, support a wide class of service requirements by channel bandwidth selection. The dynamic range is 99.5 dB for 2 MHz channels, and 90.5 dB for 16 MHz channels. Error vector magnitude measurements are presented for a single-carrier 1024-QAM and a 1024-carrier 64-QAM signal as function of frequency and channel attenuation. For 1024-QAM, the error vector magnitude (EVM) is below or equal to 1.2% rms up to 60 dB of attenuation, whereas the 1024-carrier 64-QAM performs well up to 80 dB of attenuation. The presented chip was fabricated in a 0.25 mum SiGe BiCMOS process, and the measured power consumption from a single 2.5 V supply is 668 mW.  相似文献   

13.
The integration of orthogonal frequency division multiplexing (OFDM) and radio-over-fiber (RoF) techniques have made cost-effective and high-data-rate mobile wireless Internet networks possible, such as wireless broadband networks. This paper describes the distortion effects of OFDM signals fed via an RF amplifier integrated with an RoF link employing active and passive electroabsorption modulators (EAM) for chiefly broadband in-building network applications. First, peak-to-average power ratio was investigated for RoF links. Second, the adjacent channel power ratio, which estimates the degree of spectral re- growth due to the in-band and out-of-band interference resulting from distortion effects from nonlinear amplification, error vector magnitude, and system distortion effects, was also observed for the proposed system. In this study, we considered a combined Volterra-series and impulse response-based analytical model for WiBro systems and compared it to the observed measurements. We analyzed the different nonlinear distortion effects for OFDM signals driven via an RF amplifier that was integrated with an RoF link employing a distributed feedback laser as a transmitter and an active and passive InP EAM as a receiver. The results show significant agreement between the suggested analytical model and the measurement case. This study is unique in that it examines the distortion effects of RoF links with active and passive EAMs as an access point for OFDM-based wireless access networks.  相似文献   

14.
This work describes a concept of a hierarchical radio-over-fiber (RoF) network architecture that provides both intra- and inter- network connectivity for end user wireline and wireless terminals with high-bandwidth, in-building access applications. An intelligent gateway router (IGR) is proposed as a unified platform to accommodate multi-gigabit, millimeter-wave services at 60-GHz band as well as being backward compatible with all current wireless access technologies such as WiFi and WiMAX. In addition, we further present an advanced multi-band optical carrier generation technique that can simultaneously deliver independent 60-GHz mm-wave, 2.4-GHz WiFi, and 5.8-GHz WiMAX signals efficiently carried over the same wavelength, and is suitable for the proposed IGR. Finally, we report, for the first time to our knowledge, a campus-wide field trial demonstration of RoF system transmitting uncompressed 270-Mbps standard definition (SD) and 1.485-Gbps high definition (HD) real-time video contents carried by 2.4-GHz radio and 60-GHz millimeter wave signals, respectively, between two on-campus research buildings distanced over 2.5-km standard single mode fiber (SMF-28) through the Georgia Institute of Technology's (GT) fiber network.   相似文献   

15.
A single-chip dual-band tri-mode CMOS transceiver that implements the RF and analog front-end for an IEEE 802.11a/b/g wireless LAN is described. The chip is implemented in a 0.25-/spl mu/m CMOS technology and occupies a total silicon area of 23 mm/sup 2/. The IC transmits 9 dBm/8 dBm error vector magnitude (EVM)-compliant output power for a 64-QAM OFDM signal. The overall receiver noise figure is 5.5/4.5 dB at 5 GHz/2.4 GHz. The phase noise is -105 dBc/Hz at a 10-kHz offset and the spurs are below -64 dBc when measured at the 5-GHz transmitter output.  相似文献   

16.
We analyzed the applicability of externally modulated 1550-nm laser transmitters for trunking and distribution of AM CATV channels using power and in-line EDFA's. The distribution of multiple AM CATV channels over long fiber spans is degraded by the presence of Rayleigh backscatter-induced low-frequency interferometric noise. When the laser source is modulated externally, the low-frequency interferometric noise is mixed and translated around the AM carriers. Furthermore, when isolators are not used with the optical amplifiers, the low end of the broadcast channels could be severely degraded due to doubly amplified Rayleigh backscatter. Employing narrow-linewidth semiconductor or Nd:YAG laser sources at the transmitter will lower the tail of the low-frequency interferometric noise level but will increase the translated noise peak level at each AM carrier. Therefore, the standard CNR measurement techniques, which assumes the noise spectrum is flat, may not reveal the correct video picture quality seen at the customer premises. In this analysis, we compared NCTA RF CNR and baseband video SNR results using CCIR recommended unified weighting filter. We determined that for laser linewidth less than 1 MHz and with long fiber spans, baseband video SNR as opposed to RF CNR measurements should be used to characterize the performance of AM-VSB CATV broadcast distribution systems. Finally, an experimental 78-channel AM-VSB CATV distribution system is constructed employing two EDFA's simulating head-end and hub sites and we compared RF CNR and baseband video SNR measurements using a 700-kHz linewidth externally modulated 1550-nm DFB transmitter  相似文献   

17.
In this paper, we demonstrate multiband orthogonal frequency division multiplexing (MB-OFDM) transmission of quadrature phase shift keying (QPSK) modulation with 200-Mb/s bit rate by all-optical frequency up-conversion using external modulator for ultrawideband (UWB) applications to 60-GHz band radio-over-fiber (RoF) network. Error vector magnitude (EVM) measurements are used to evaluate the performance of our system and an EVM root mean square (rms) of 12.6% at 60 GHz is obtained with our technique and corresponds to bit error rate (BER) below $10^{-9}$, in compliance with standard requirements.   相似文献   

18.
This letter experimentally demonstrated a hybrid access network which supports both radio-over-fiber and fiber-to-the-x systems. A 20-GHz radio-frequency (RF) 312.5-MSymbol/s M-ary phase-shift keying (PSK) signal and a baseband (BB) 1.25-Gb/s on–off keying signal are simultaneously generated and transmitted over an identical distributed infrastructure. The wired BB signal is compatible with the existing passive optical network (PON) system, and the wireless RF PSK signal can also share the same distributed infrastructure. The proposed system has no RF fading issue, no narrowband optical filter at remote node to separate the RF and BB signals, and can carry vector signals. Moreover, a frequency doubling for optical RF signal generation is achieved to reduce the bandwidth requirement of the transmitter. After transmission over 25-km standard signal-mode fiber, the receiver sensitivity penalties are less than 0.5 dB for both the RF and BB channels.   相似文献   

19.
A 43-GHz wireless inter-chip data link including antennas, transmitters, and receivers is presented. The industry standard bonding wires are exploited to provide high efficiency and low-cost antennas. This type of antennas can provide an efficient horizontal communication which is hard to achieve using conventional on-chip antennas. The system uses binary amplitude shift keying (ASK) modulation to keep the design compact and power efficient. The transmitter includes a differential to single-ended modulator and a two-stage power amplifier (PA). The receiver includes a low-noise amplifier (LNA), pre-amplifiers, envelope detectors (ED), a variable gain amplifier (VGA), and a comparator. The chip is fabricated in 180-nm SiGe BiCMOS technology. With power-efficient transceivers and low-cost high-performance antennas, the implemented inter-chip link achieves bit-error rate (BER) around 10-8 for 6 Gb/s over a distance of 2 cm. The signal-to-noise ratio (SNR) of the recovered signal is about 24 dB with 18 ps of rms jitter. The transmitter and receiver consume 57 mW and 60 mW, respectively, including buffers. The bit energy efficiency excluding test buffers is 17 pJ/bit. The presented work shows the feasibility of a low power high data rate wireless inter-chip data link and wireless heterogeneous multi-chip networks.  相似文献   

20.
We experimentally demonstrated a novel radio-over-fiber system to simultaneously generate dispersion-tolerant multiband downstream signals, including millimeter-wave, microwave, and baseband signals, based on multicarrier modulation in an intensity modulator and a subsequent optical filter. The uplink connection is realized by remodulation of downlink optical carrier and by baseband detection in the central office. The high-dispersion tolerance comes from the subcarrier cross-selection with only one data-bearing tone before signal beating in the receiver. The power penalty of 1.4 dB for 60-GHz carrier and negligible degradation for baseband and upstream are achieved for 2.5-Gb/s signal after 50-km single-mode fiber (SMF-28) and 4-m air link transmission. The theoretical analysis is also provided to obtain the optimal operation point.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号