首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A one-dimensional transient analytical model is proposed to estimate the performance of earth-to-air heat exchangers, installed at different depths, used for building cooling/heating. Two independent space coordinates are considered, one in the longitudinal direction of the buried pipe and the other through the soil, in the vertical direction. With appropriate simplifications, analytical treatment is proposed to predict the temperature fields of the fluid in the pipe and of the soil in the proximity of the buried pipe, taking into account thermal perturbation of the upper free surface and the possible phase change (condensation) in the buried pipes. Moreover, the agreement with some experimental data available in the literature is very satisfactory.  相似文献   

2.
In this article, we use the concept of artificial neural network and goal oriented design to propose a computer design tool that can help the designer to evaluate any aspect of earth-to-air heat exchanger and behavior of the final configuration. The present study focuses mostly on those aspects related to the passive heating or cooling performance of the building. Two models have been developed for this purpose, namely deterministic and intelligent. The deterministic model is developed by analyzing simultaneously coupled heat and mass transfer in ground whereas the intelligent model is a development of data driven artificial neural network model. Six variables influencing the thermal performance of the earth-to-air heat exchangers which were taken into account are length, humidity, ambient air temperature, ground surface temperature, ground temperature at burial depth and air mass flow rate. Furthermore, a sensitivity analysis was carried out in order to evaluate the impact of various factors involved in the energy balance equation at the burial depth. The model was validated against experimental data sets. Moreover, the developed algorithm is suitable for the calculation of the outlet air temperature and therefore of the heating and cooling potential of the earth-to-air heat exchanger system. The Intelligent model predicts earth-to-air heat exchanger outlet air temperature with an accuracy of ±2.6%, whereas, the deterministic model shows an accuracy of ±5.3%.  相似文献   

3.
地源热泵系统作为利用可再生能源的暖通空调技术,具有节能、环保等优点,在世界范围内被广泛使用。土壤作为地源热泵系统的冷热源,对整个系统有着至关重要的影响。不同建筑负荷特性要求系统对土壤的取放热量不同,二者的不平衡会使土壤的温度发生变化,影响整个系统的运行。对特定建筑地源热泵系统土壤的热物性测试是设计地埋管系统的重要依据。本文对热物性测试的理论依据进行了简单介绍,并对具体事例进行了分析计算,得出岩土体的导热系数等具体热物性参数,为地源热泵系统的精确设计提供了依据。  相似文献   

4.
A complete model is used in this study for the prediction of the daily and annual variation of ground surface temperature. This model is based on the transient heat conduction differential equation using as boundary condition the energy balance equation at the ground surface. The energy balance equation involves the convective energy exchange between air and soil, the solar radiation absorbed by the ground surface, the latent heat flux due to evaporation at the ground surface as well the long-wave radiation. The model is validated against various extensive sets of measurements for bare and short-grass covered soil in Athens and Dublin and its results are compared with the corresponding results of models based on Fourier analysis. Furthermore, a sensitivity investigation was carried out in order to evaluate the impact of various factors involved in the energy balance equation at the ground surface on the soil temperature distribution. The overall analysis is useful for the prediction of the thermal performance of buildings in direct contact with the soil as well as for the prediction of the energy efficiency of earth-to-air heat exchangers.  相似文献   

5.
G. Mihalakakou   《Renewable Energy》2003,28(6):917-927
The present paper deals with the heating potential of a single buried pipe using real climatic data. The use of buried pipes in buildings for heating and cooling purposes has gained increasing acceptance in recent years. The system’s heating potential was calculated using an accurate, dynamic, deterministic, numerical model. Multiyear ambient air and soil climatic data for the city of Athens have been used as inputs to the deterministic model and the results were compared. Furthermore, a neural network approach was used for estimating the thermal performance of the system in heating for the city of Athens. Moreover, the influence of several climatic parameters used as inputs to the neural model such as the ambient air temperature, the ground temperature and the relative humidity is investigated and analysed.  相似文献   

6.
《Renewable Energy》2007,32(15):2461-2478
The temperature at a certain depth in the ground remains nearly constant throughout the year and the ground capacitance is regarded as a passive means of heating and cooling of buildings. To exploit effectively the heat capacity of the ground, a heat-exchanger system has to be constructed. This is usually an array of buried pipes running along the length of a building, a nearby field or buried vertically into the ground. A circulating medium (water or air) is used in summer to extract heat from the hot environment of the building and dump it to the ground and vice versa in winter. A heat pump may also be coupled to the ground heat exchanger to increase its efficiency. In the literature, several calculation models are found for ground heat exchangers. The main input data are the geometrical characteristics of the system, the thermal characteristics of the ground, the thermal characteristics of the pipe and the undisturbed ground temperature during the operation of the system. During the first stages of the geothermal systems study, one-dimensional models were devised which were replaced by two-dimensional models during the 1990s and three-dimensional systems during recent years. The present models are further refined and can accommodate for any type of grid geometry that may give greater detail of the temperature variation around the pipes and in the ground. Monitoring systems have been set up to test various prototype constructions with satisfactory results.  相似文献   

7.
A thermal model has been developed to investigate the potential of using the stored thermal energy of the ground for greenhouse heating with the help of an earth to air heat exchanger (EAHE) system integrated with the greenhouse located in the premises of IIT, Delhi, India. Experiments were conducted extensively during the winter period from November 2002 to March 2003, but the model developed was validated against the clear and sunny days. Parametric studies performed for EAHE coupled with the greenhouse illustrate the effects of buried pipe length, pipe diameter, mass flow rate of air, depth of ground and soil types on greenhouse air temperatures. Temperatures of greenhouse air with the experimental parameters of EAHE were found to be on an average 7–8°C more in the winter than the same greenhouse without EAHE. Greenhouse air temperatures increase in the winter with increasing pipe length, decreasing pipe diameter, decreasing mass flow rate of flowing air inside buried pipe and increasing depth of ground up to 4 m. Predicted and measured values of greenhouse air temperature, which were verified in terms of root mean square of percent deviation and correlation coefficient, exhibited fair agreement. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

8.
土壤蓄冷与释冷过程的模拟研究   总被引:1,自引:0,他引:1  
综合蓄冷技术与土壤耦合热泵技术的优点,开创性地提出了以土壤作为蓄冷介质的集低温工况、空调工况和制热工况为一体的三工况型土壤蓄冷与土壤耦合热泵集成系统的新设想。并在能量平衡的基础上,建立了埋管管束内层及外层盘管蓄冷、释冷过程的数学模型。通过模拟计算,比较分析了内、外层单根盘管的蓄冷、释冷运行特性,并对单根埋管换热器蓄冷、释冷过程的传递冷量损失及垫层冷量损失进行了初步的分析。  相似文献   

9.
The design, construction, and operation of a prototype 1000 m2 passive solar agricultural greenhouse are described. The greenhouse has been designed in order to reduce heat losses and increase useful solar gains on a daily and seasonal basis. The passive elements of the greenhouse are a mass storage wall located on the north side and a network of earth-to-air heat exchangers buried in the greenhouse. Monitoring of the greenhouse for a 2-year period has shown that the passive systems have offered energy equal to 35% of the heating requirements of an identical conventional greenhouse. Also, the cooling potential of the earth-to-air heat exchangers has been found to be very important. This project is a Solar Demonstration Programme of the European Communities.  相似文献   

10.
Advancement in genetic algorithm (GA) optimization tools for design applications, coupled with techniques of soft computing, have led to new possibilities in the way computers interact with the optimization process. In this paper, the concept of goal-oriented GA has been used to design a tool for evaluating and optimizing various aspects of earth-to-air heat exchanger behavior. A new optimization method based on GA is applied as a generative and search procedure to optimize the design of earth-to-air heat exchanger. The GA is used to generate possible design solutions, which are evaluated in terms of passive heating and cooling of building, using a detailed thermal analysis of non air-condition building environment The results from the simulations are subsequently used to further guide the GA search to find the high-energy solutions for optimized design parameters. The specific problem addressed in this study is the sizing of earth-to-air heat exchanger in a non air-conditioned residential building. The developed algorithm is suitable for the calculation of the outlet air temperature and therefore of the heating and cooling potential of the earth-to-air heat exchanger system. This methodology is applicable to a wide range of design optimization problems like choice of building such as green house, solar house, or heating and cooling of buildings by mechanical system.  相似文献   

11.
Ground heat exchangers have vital importance for ground source heat pump applications. Various configurations tried to improve heat transfer in the soil. A new kind of aluminium finned pipe buried in the soil for this aim. In order to compare effectiveness of the Al finned pipe over the traditional PPRC pipe an experimental study carried out. The experimental GSHP system was installed at Y?ld?z Technical University Davupasa Campus on 800 m2 surface area with no special surface cover. Temperature data were collected using thermocouples buried in soil horizontally and vertically at various distances from the pipe center and at the inlet and the outlet of the ground heat exchanger. Experimental results were compared with results from analytical study. To compare effectiveness of the Al finned pipe and PPRC pipe a new parameter defined as transferred amount of heat per unit mass of working fluid per unit time for this aim. It is found that Al finned pipe has higher heat transfer values than the traditional PPRC pipe.  相似文献   

12.
吕丽霞  李素芬  李亮  东明 《节能》2005,(6):6-9,2
针对土壤源热泵地下垂直U型换热埋管,建立了周围土壤的非稳态温度场的数学模型,并利用隐式有限差分法进行了数值模拟。通过对制冷和制热工况的模拟,得到土壤温度沿径向的变化规律、埋管出水温度的变化规律及埋管的热作用半径的变化规律。  相似文献   

13.
A new complete numerical model for the prediction of thermal performance of the earth-to-air heat exchangers is presented. The model describes the simultaneous heat and mass transfer inside the tube and into the soil accounting for the soil natural thermal stratification. The model is validated against an extensive set of experimental data and it is found accurate. The proposed algorithms are suitable for the calculation of the temperature and humidity variation of the circulating air and for the temperature and humidity distribution inside the ground. The presented model was developed within the TRNSYS environment and can be easily coupled with building or greenhouse simulation codes in order to describe the impact of the earth-to-air heat exchangers to indoor environments.  相似文献   

14.
The present study highlights the exergetic performance characteristics of an underground air tunnel for greenhouse cooling with a 47 m horizontal, 56 cm nominal diameter U-bend buried galvanized ground heat exchanger. This system was designed and installed in the Solar Energy Institute, Ege University, Izmir, Turkey. Underground air tunnel systems, also known as earth-to-air heat exchangers, are recognized to be outstanding heating, cooling and air heating systems. On the other hand, they have not been used yet in the Turkish market. Greenhouses also have important economical potential in Turkey’s agricultural sector. Greenhouses should be cooled during the summer or hot days. In order to establish optimum growth conditions in greenhouses, renewable energy sources should be utilized as much as possible. It is expected that effective use of underground air tunnels with a suitable technology in the modern greenhouses will play a leading role in Turkey in the foreseeable future. The exergy transports between the components and the destructions in each of the components of the system are determined for the average measured parameters obtained from the experimental results. Exergetic efficiencies of the system components are determined in an attempt to assess their individual performances and the potential for improvements is also presented. The daily maximum cooling coefficient of performances (COP) values for the system are also obtained to be 15.8. The total average COP in the experimental period is found to be 10.09. The system COP was calculated based on the amount of cooling produced by the air tunnel and the amount of power required to move the air through the tunnel, while the exergetic efficiency of the air tunnel is found to be in a range among 57.8–63.2%. The overall exergy efficiency value for the system on a product/fuel basis is found to be 60.7%.  相似文献   

15.
An aquifer coupled cavity flow heat exchanger system (ACCFHES) was designed using underground aquifer water for the heating as well as cooling of a composite climatic greenhouse. The performance of ACCFHES was experimentally evaluated for a full winter and a summer season. The ACCFHES makes use of constant temperature aquifer water (24 °C) available at an agricultural field through an irrigation tube well for heating in winter nights and cooling in summer days. The results showed that the average greenhouse room air temperature was maintained 7–9 °C above the outside air during extreme winter nights and 6–7 °C below the outside air in extreme summer days, and temperature fluctuations inside the greenhouse also decreased daily. The average relative humidity (RH) inside the greenhouse also decreased by 10–12% in the winter and increased by more than double in the extreme summer conditions as compared to the outside conditions. A comparison of economic feasibility of the ACCFHES coupled greenhouse was also conducted with conventional greenhouse and open field condition based on the yield of Capsicum annum. The ACCFHES was also compared economically with other existing heating/cooling technologies such as earth-to-air heat exchanger system (EAHES), ground air collector, evaporative cooling using foggers and fan & pad system in terms of net present worth (NPW) and pay back period. It was observed that the NPW of the ACCFHES coupled greenhouse was much higher as compared to the conventional greenhouse and open field condition. The payback period of the ACCFHES coupled greenhouse was the lowest among all other existing heating/cooling systems.  相似文献   

16.
A numerical study was conducted for the thermal behavior of soil heat exchanger-storage systems (SHESSs) aimed at reducing the energy consumption of greenhouses. These systems consists of buried pipes circulating air for storing and removing heat from the soil. First, a transient fully three-dimensional heat transfer model resting on the coupled conservation equations of energy for the soil and the circulating air is presented. The model is validated with experimental data taken from a SHESS installed in a commercial type greenhouse. Next, the model is used to examine the effect of various design and operating parameters on the performance of SHESSs. Results, indicate that the total amount of energy stored or recovered daily per volume Qv decreases exponentially with the pipe center-to-center distance and the pipe length. It increases with the air velocity and this effect is enhanced as the pipe center-to-center distance diminishes. Nevertheless, as a compromise between cost and performance, it appears that an air blowing of 4 m s±1 is nearly optimal. As the moisture content of the soil increases, Qv augments but its effect becomes negligible for large pipe lengths and small blowing velocities. Adding side insulation improves the performance of the SHESS but the beneficial effect of insulation underneath the bottom pipe row is significant. Finally, burying pipes deeper underground allows more energy to be stored during the day but less is recovered at night through the ground surface and the overall performance declines.  相似文献   

17.
The ground heat exchangers (GHE) consist of pipes buried in the soil and is used for transferring heat between the soil and the heat exchanger pipes of the ground source heat pump (GSHP). Because of the complexity of the boundary conditions, the heat conduction equation has been solved numerically using alternating direction implicit finite difference formulation. A software was developed in MATLAB environment and the effects of solution parameters on the results were investigated. An experimental study was carried out to test the validity of the model. An experimental GSHP system is installed at Y?ld?z Technical University Davupasa Campus on 800 m2 surface area with no special surface cover. Temperature data were collected using thermocouples buried in soil horizontally and vertically at various distances from the pipe center and at the inlet and the outlet of the ground heat exchanger. Experimental and numerical simulation results calculated using experimental water inlet temperatures were compared. The maximum difference between the numerical results and the experimental data is 10.03%. The temperature distribution in the soil was calculated and compared with experimental data also. Both horizontal and vertical temperature profiles matched the experimental data well. Simulation results were compared with the other studies.  相似文献   

18.
This communication presents the periodic heat transfer analysis for solar space heating of an unconditioned building with an integrated roof air heater. The system consists of an air duct within the roof such that the air is continuously or intermittently forced to circulate the cooler room air through the inlet of the air duct. Time dependence of the air flow is represented by a step function of time for daily operation and, hence, has been expressed as a Fourier series in time. The analysis takes into account air ventilation, ground heat conduction and furnishings. The effects of depth of the air duct from the outer surface of the roof and the magnitude and duration of air flow rate on indoor air temperature have been studied for a typical cold winter day in Delhi. It is seen that a time dependent air flow through the duct is desirable from the point of view of increasing the indoor air temperature in the case of a bare roof. However, in the case of a blackened and glazed roof, continuous air flow is needed for increasing the room air temperature. The results are desirable from the point of view of efficient space heating of solar passive buildings.  相似文献   

19.
An experimental study of thermal and moisture behaviors of dry and wet soils heated by buried capillary plaits was done. This study was carried out on a prototype similar to an agricultural tunnel greenhouse. The experimental procedure consisted on three different measuring phases distinguished by three different operational conditions of the capillary plaits: heating at 70 °C, heating at 40 °C and without heating in summer. During an experimental run, quantities measured are soil temperature, soil water content at various depths, soil surface heat flux, solar radiation under the plastic cover, internal relative humidity, internal and external air temperature. In unsaturated moist soils, the transport of heat is complicated by the fact that heat and mass transfer is a coupled process. During the daily soil temperature variation, it was found that the surface temperature amplitude was higher in wet soil than in dry soil. The water content increased during daytime and decreased during nighttime. The diurnal variation amplitude of water content was higher without underground heating and decreased with the buried heat source temperature.  相似文献   

20.
The objective of this study is to contribute to widespread use of earth-to-air heat exchangers by proposing a design procedure. In this paper, it is discussed the design method when an earth-to-air heat exchanger system consists of multiple pipes with a close arrangement.A numerical model for this multi-cool/heat tube system was developed and it was verified by field measurements. With taking into account the thermal interference between tubes, the heat transfer performance was evaluated under various design conditions such as number of tubes, arrangement interval, air velocity and length, and soil properties. Based on these results, an estimation method for the heat transfer rate for the multi-cool/heat tube system is proposed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号