首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Surface passivation is one of the primary requirements for high efficient silicon solar cells. Though the current existed passivation techniques are effective, expensive equipments are required. In this paper, a comprehensive understanding of the SiO2 passivation layer grown by liquid phase deposition (LPD) was presented, which was cost-effective and very simple. It was found that the post-annealing process could significantly enhance the passivation effect of the LPD SiO2 film. Besides, it was revealed that both chemical passivation and field-effect passivation mechanisms played important roles in outstanding passivation effect of the LPD SiO2 film through analyzing the minority carrier lifetime and the surface recombination velocity of n-type and p-type silicon wafers. Although the deposition parameters had little influence on the passivation effect, they affected the deposition rate. Therefore, appropriate deposition parameters should be carefully chosen based on the compromise of the deposition rate and fabrication cost. By utilizing the LPD SiO2 film as surface passivation layer, a 19.5%-efficient silicon solar cell on a large-scale wafer (156 mm × 156 mm) was fabricated.  相似文献   

2.
We use variable temperature Hall effect measurements to determine the doping concentration, impurity compensation, and mobility of n- and p-type liquid phase epitaxy (LPE) silicon layers that are grown from indium solutions onto silicon substrates. Our theoretical analysis of carrier concentration versus temperature data considers temperature-dependent effective masses, Fermi-Dirac statistics, multiple majority impurity levels, excited impurity states, and the temperature dependence of the Hall scattering factor. The measured Hall mobilities and computed compensation ratios in these LPE silicon thin films are within the range of values that have been measured in bulk silicon crystals. Such LPE layers are therefore suitable for the fabrication of high efficiency silicon thin film solar cells.  相似文献   

3.
Thin layers of about 30 μm thickness were grown on upgraded metallurgical (UMG) silicon substrates by liquid phase epitaxy (LPE) from an indium solvent. Instead of adding electronic grade silicon to the solution, a melt back step was carried out before each growth process to supply silicon to the melt from the UMG-Si wafers. We present an LPE technology which is capable to be directly scaled up to a few hundred layers per run. Solar cells have been fabricated based on phosphorous paste diffusion with efficiencies up to η=10.0%.  相似文献   

4.
High-efficiency CdS/CdTe solar cells with thin CdS film have recently been developed. Semiconductive layers of CdS via the CVD method and of CdTe via the CSS method were deposited on an ITO/#7059 substrate. Cell performance depends primarily on the thickness of CdS film, and the conversion efficiency is highest for a CdS film thickness of around 60 nm. Since the CdS film thickness decreases by about 30% during deposition of the CdTe layer, a thickness of 95 nm is required to obtain a 60 nm-thick CdS film after deposition of a CdTe layer. By observing the CdS film during the CdTe deposition process, a decrease was detected before CdTe layer completely covers the surface of the CdS film. By optimizing the thickness of CdS film, an efficiency of 15.12% for the best cell under AM 1.5 verified at JQA was obtained. This fabrication process has good reproducibility; 92.5% of 1 cm2 solar cells fabricated under the same conditions have efficiencies above 14%.  相似文献   

5.
Recently, an innovative silicon solar cell structure has been developed at ISFH which is capable of achieving very high cell efficiencies on industrial-size wafers with a simple photolithography-free processing sequence. As the corresponding solar cells essentially rely on the application of obliquely evaporated contacts they are denoted as OECO cells. In this paper the successful up-scaling of the novel OECO process from 21% efficient 4 cm2 laboratory devices to the fabrication of large-area (100 cm2) silicon solar cells is described, and independently confirmed total area efficiencies of 20% are reported for 10×10 cm2 OECO-type solar cells fabricated on p-type float-zone silicon.  相似文献   

6.
The fabrication of a 11.4% efficient thin film solar cell based on CuInS2 with an Inx(OH,S)y buffer layer is described. The device parameters and performance are compared to heterojunctions with a standard Us buffer layer. A junction breakdown at negative bias under illumination is related to the buffer layer. A simple model implying photoconductive shunting paths is presented.  相似文献   

7.
Recently, a substantially simplified PERC silicon solar cell has been developed at ISFH with independently confirmed 1-sun efficiencies of up to 20.0%. This paper describes the details of the relatively simple cell fabrication process and experimentally characterizes the new cells. The simplified design involves reflection control by means of random pyramids, the direct evaporation of the front metal grid onto the random pyramids, elimination of the need for nontextured areas underneath the contact grid, and the use of a single phosphorous diffusion (1-step emitter).  相似文献   

8.
Although silicon solar cells based on layers less than 50 μm thick have become very popular, little attention has been paid to the role of the underlying silicon substrate. This treatment uses the device simulation program PC-1D and the ray tracing program SUNRAYS to examine the role of the substrate in contributing to the current and efficiency of textured and non-textured thin layer solar cells. For the case of a heavily doped silicon substrate, substrate contributions can be significant for cells with sufficiently thin base layers. For example, for the case of a silicon thin layer cell with a base layer thickness of 20 μm and a substrate doping of 6 × 1018 cm−3, the substrate contributes no more than 4% of the total short-circuit current. However, decreasing the base width to 5 μm results in an increase in this substrate contribution to 20%. Light trapping tends to alleviate the substrate contribution by increasing the effective path length in the base. Examination of the current components under forward bias reveals that for a thin layer cell with a high quality base and good front surface passivation, back diffusion of electrons into the substrate limits cell performance.  相似文献   

9.
We have developed a new apparatus for the growth of liquid-phase epitaxy (LPE)-Si films on 5 in Si wafers. We have obtained high growth rates of 0.1–1.0 μm/min and minority-carrier lifetime of average value of 10 μs over the whole of wafer, whereas the thickness uniformity was degraded when rotating the wafers in the solvent. We also demonstrated to growth of LPE-Si films on porous Si layers and to separate the Si films from the porous layers. A 9.5% cell was obtained using a LPE-Si film after separation.  相似文献   

10.
To raise the output voltage of silicon solar cells several solar cells on one wafer can be monolithically interconnected. A solar cell system consisting of 20 solar cells on a 2×2 cm2 area has been produced on a 4” SOI-wafer with a 15 μm thick monocrystalline active layer. Under irradiation with an AM1.5G spectrum an open-circuit voltage of 7.5 V and current densities up to 17 mA/cm2 for the system have been measured. An increase in performance is expected, when the doping and contact processing is better suited and a light trapping structure is realized for the solar cell system.  相似文献   

11.
The potential of porous silicon (PS) with dual porosity structure as an intermediate layer for ultra-thin film solar cells is described. It is shown that a double-layered PS with a porosity of % allows to grow epitaxial Si film at medium temperature (725°–800°C) and at the same time serves as a gettering/diffusion barrier for impurities from potentially contaminated low-cost substrate. A 3.5 μm thin-film cell with reasonable efficiency is realized using such a PS intermediate layer.  相似文献   

12.
Dopant incorporation leading to drift field in a thin silicon solar cell may be controlled and compensated suitably to produce positive or negative drift field. A positive drift field at the base increases short-circuit current density simultaneously decreasing open-circuit voltage, resulting in some net benefit in efficiency for unpassivated front and back surface. In case of well-passivated front and back, however, positive drift field may result in a marginal drop in efficiency. If the dopant incorporation is compensated to produce a small negative drift field, open-circuit voltage increases to such an extent that the overall effect is an increase in efficiency for moderately passivated front and back. Moderate passivation and small negative field seems to produce the best results. The effect may yield 10% gain in overall efficiency for thin cells. Methods of incorporating small negative drift field in LPE grown thin silicon cells are also suggested.  相似文献   

13.
A high efficiency thin film silicon solar cell and module   总被引:2,自引:0,他引:2  
A photoelectric conversion efficiency of over 10% has been achieved in thin-film microcrystalline silicon solar cells which consist of a 2 μm thick layer of polycrystalline silicon. It was found that an adequate current can be extracted even from a thin film due to the very effective light trapping effect of silicon with a low absorption coefficient. As a result, this technology may eventually lead to the development of low-cost solar cells. Also, an initial aperture efficiency as high as 13.5% has been achieved with a large area (91 cm × 45 cm) tandem solar cell module of microcrystalline silicon and amorphous silicon (thin film Si hybrid solar cell). An even greater initial efficiency of 14.7% has been achieved in devices with a small size (area of 1 cm2), and further increases of efficiency can be expected.  相似文献   

14.
对薄晶体硅太阳电池的生产工艺和材料进行了试验.通过调整背电极浆料和电池基片厚度,探索了减少太阳电池弯曲度的途径.试验显示,使用薄片铝浆对电池弯曲度的影响有明显改善,弯曲度可降低52%,电池片弯曲度最小为0.55 mm.  相似文献   

15.
In order to obtain high sunlight transmittance for silicon thin film solar cells, the textured surface such as pyramid shapes is commonly considered along the boundary between the silicon layer and the transparent conductive oxide (TCO) layer. Layered structure design having the improved transmittance into the light absorbing layer for specific frequencies is derived using the so called topology optimization design method combined with the time dependent finite element analysis. A triangle patterned textured surface is considered as the initial shape for two-dimensional wave analysis and the periodic boundary condition is applied to both sides of the unit-structure model. The design objective is set to maximize the energy flux at the specified wave absorbing area during some time period so that the objective function is evaluated as the time integration of a Poynting vector formulation. A multiple layered pattern representing a silicon layer and a TCO layer in turn is obtained for the optimal shape of the light absorbing boundary. As thicknesses of each layer are associated with the incident beam wavelength, various wavelengths of incident light condition are considered and each of the optimal design cases according to the wavelength are compared.  相似文献   

16.
This paper reviews recent efforts to provide the scientific and technological basis for cost-effective and highly efficient thin film solar modules based on amorphous (a-Si:H) and microcrystalline (μc-Si:H) silicon. Textured ZnO:Al films prepared by sputtering and wet chemical etching were applied to design optimised light-trapping schemes. Necessary prerequisite was the detailed knowledge of the relationship between film growth, structural properties and surface morphology obtained after etching. High rate deposition using plasma enhanced chemical vapour deposition at 13.56 MHz plasma excitation frequency was developed for μc-Si:H solar cells yielding efficiencies of 8.1% and 7.5% at deposition rates of 5 and 9 Å/s, respectively. These μc-Si:H solar cells were successfully up-scaled to a substrate area of 30×30 cm2 and applied in a-Si:H/μc-Si:H tandem cells showing initial test cell efficiencies up to 11.9%.  相似文献   

17.
The aim of this work is the quantitative chemical analysis of polycrystalline silicon thin films grown on glass substrates at temperatures <600°C by means of transmission electron microscopy (TEM) and electron energy-loss spectrometry (EELS). Specimens produced with two different methods were investigated. We found significant differences in grain size and morphology, as well as in the distribution of oxygen. A surprisingly high amount of Ba diffusion from the subtrate was detected.  相似文献   

18.
Thin-film silicon cells produced on crystalline silicon substrates have the potential to achieve high cell efficiencies at low cost. We have used a modified liquid-phase epitaxy growth process to produce very smooth, high-quality silicon films on multicrystalline silicon substrates. Photoconductivity decay measurements indicate that the minority carrier lifetimes in these layers are at least 10 μs, sufficient to achieve cell efficiencies in excess of 16%. This efficiency potential is confirmed in small area cells, which have displayed efficiencies up to 15.4%. Further improvements up to 17% efficiency are possible in the short term, even without the introduction of any light-trapping schemes into the device structure.  相似文献   

19.
A p-a-Si:H layer, deposited by a photo-assisted chemical vapor deposition (photo-CVD) method, was adopted as the window layer of a hydrogenated microcrystalline silicon (μc-Si:H) solar cell instead of the conventional p-μc-Si:H layer. We verified the usefulness of p-a-Si:H for the p-layer of the μc-Si:H solar cell by applying it to SnO2-coated glass substrate. It was found that the quantum efficiency (QE) characteristics and solar cell performance strongly depend on the p-a-Si:H layer thicknesses. We applied boron-doped nanocrystalline silion (nc-Si:H) p/i buffer layers to μc-Si:H solar cells and investigated the correlation of the p/i buffer layer B2H6 flow rate and solar cell performance. When the B2H6 flow rate was 0.2 sccm, there was a little improvement in fill factor (FF), but the other parameters became poor as the B2H6 flow rate increased. This is because the conductivity of the buffer layer decreases as the B2H6 flow rate increases above appropriate values. A μc-Si:H single-junction solar cell with ZnO/Ag back reflector with an efficiency of 7.76% has been prepared.  相似文献   

20.
A record efficiency of 16.4% (156.25 cm2) has been achieved for an n-type wafer-based (hereafter, “n-based”) mc-Si solar cell. A horizontal quartz tube furnace with an industry-compatible scale is employed for forming a p+-emitter using boron tribromide (BBr3) as the boron source, in which system less contamination is confirmed than in other options of boron diffusion. A significantly homogeneous emitter is achieved with the standard deviation of 1.5 Ω/sq. n-Based mc-Si solar cells are fabricated with phosphorus-diffused BSF, SiN deposition, and fire-through screen-printed contacts. The properties of the best cell are; η: 16.4%, Voc: 607 mV, Jsc: 35.2 mA/cm2, and FF: 76.7%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号