首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Although both the CD4 and CD8 molecules enhance antigen responsiveness mediated by the T cell receptor (TCR), it is not known whether CD4 and CD8 initiate similar or different intracellular signals when they act as coreceptors. To characterize the early signals transmitted by CD4 and CD8, both CD4 and CD8 alpha were expressed in the same murine T cell hybridoma. In the double positive transfectants, CD4 and CD8 associated with equal amounts of p56lck (Lck), and both molecules enhanced interleukin 2 (IL-2) production equivalently when cross-linked with suboptimal levels of anti-TCR antibody. However, in an in vitro kinase assay, cross-linking CD4 initiated fourfold greater kinase activity compared with CD8 cross-linking. In the same assay, when CD4 or CD8 was cross-linked to the TCR, novel phosphorylated proteins were found associated with the TCR/CD4 complex but not with the TCR/CD8 complex. Consistent with this data, antiphosphotyrosine immunoblotting revealed greater tyrosine phosphorylation of intracellular substrates after TCR/CD4 cross-linking compared with TCR/CD8 cross-linking. Additionally, a specific protein kinase C inhibitor (RO318220) inhibited CD8-mediated enhancement of IL-2 production far more effectively than CD4-mediated enhancement. Thus, it appears that CD8 alpha may depend more on a protein kinase C-mediated signaling pathway, whereas CD4 may rely on greater tyrosine kinase activation. Such differential signaling via CD4 and CD8 has implications for thymic ontogeny and T cell activation.  相似文献   

2.
The efficiency and magnitude of T cell responses are influenced by ligation of the co-stimulatory receptor CD28 by B7 molecules expressed on antigen-presenting cells (APC). In contrast to most previous studies in which agonistic anti-TCR/CD3 and anti-CD28 antibodies were employed, here we have investigated the contribution of CD28 to T cell activation under physiological conditions of antigen presentation. Jurkat T cells and primary T cells from TCR-transgenic mice stimulated with superantigen and antigen, respectively, presented by B7-expressing APC were utilized. In both systems we show that inhibiting CD28/B7 interaction resulted in impaired TCR-induced tyrosine phosphorylation of the signal-transducing zeta chain and ZAP-70. Consistent with a blockade of TCR-proximal signaling events, Jurkat cells stimulated in the absence of CD28 ligation were found to have strongly diminished tyrosine phosphorylation of cellular substrates and downstream signaling pathways such as Ca2+/calcineurin, ERK/MAPK and JNK. Our results provide evidence for a role of CD28 in enhancing TCR signaling capacity during the earliest stages of T cell:APC interaction.  相似文献   

3.
The effect of early human immunodeficiency virus-1 infection in vitro on proximal signal transduction events in primary peripheral blood lymphocytes was investigated with respect to CD4-mediated costimulation of CD3/T cell-receptor signalling. Tyrosine phosphorylation profiles induced by CD4 and CD3 + CD4 ligation were profoundly abrogated in virally infected cells, although CD4 receptor expression remained intact during early infection. Furthermore, the association of the tyrosine kinase p56lck with the CD4 receptor was reduced in virally infected cells. The downmodulation of CD4-mediated CD3 signalling coincided with the subsequent inhibition of the activity and tyrosine phosphorylation of the downstream kinase ZAP-70 in virally infected cells. The observed virally mediated cosignalling defects during early infection may account for the inhibition of distal signal events and thus contribute to HIV pathogenesis, such as reduced immune response to antigenic exposure, anergy, and apoptosis.  相似文献   

4.
CD28 is a 44-kDa homodimeric receptor that is expressed on the majority of T cells. Engagement of the CD28 receptor by soluble anti-CD28 mAb in conjunction with phorbol ester (PMA) induces the production of cytokines and the proliferation of resting T cells via signal transduction pathways independent of the TCR. Evidence is provided herein that CD28 signals leading to cytokine production do not require the p59fyn (Fyn) tyrosine kinase, whereas CD28-mediated proliferation is dependent on the presence of the Fyn kinase in thymic, but not lymph node, cells. The defect in proliferation is not due to failure of IL-2R signaling, since addition of high concentrations of exogenous IL-2 can overcome the proliferative defect. Analysis of CD28-directed induction of the IL-2R alpha (CD25)-chain, which confers high affinity binding to IL-2, showed that Fyn-deficient thymocytes, but not lymph node cells, failed to up-regulate CD25 expression following anti-CD28 and PMA stimulation. Thus, the Fyn tyrosine kinase is critically required for thymic CD28-mediated CD25 expression and proliferation but not for CD28-mediated cytokine production.  相似文献   

5.
6.
Previous studies have demonstrated that a mAb that recognizes the leukocyte surface Ag V7 inhibits TCR/CD3-dependent T cell activation. In the current study, we demonstrate that in addition to inhibiting T cell proliferation and IL-2 production, anti-V7 blocks tyrosine phosphorylation of TCR/CD3-associated substrates. PMA overcomes this effect, and both PMA and exogenous IL-2 overcome anti-V7-mediated inhibition of T cell proliferation and IL-2 production. T cells stimulated with anti-CD3 in the absence of CD28 or V7 ligation become unresponsive (anergic) to restimulation with anti-CD3; T cells primed in the presence of either anti-V7 or anti-CD28 retain their ability to respond to restimulation with anti-CD3. When T cells are primed in the presence of optimal concentrations of anti-V7 and anti-CD28 Abs, they proliferate normally, indicating that the costimulatory signals generated through CD28 dominate the inhibitory signals generated through V7. However, as the anti-CD28 stimulus is diluted, the V7 effect becomes dominant and proliferation is inhibited. Thus, although both anti-V7 and anti-CD28 Abs prevent anergy, they induce distinct, competing intracellular signals. Wortmannin, which blocks phosphoinositol 3-kinase-dependent signaling, has little effect on V7-mediated inhibition, while herbimycin, an inhibitor of tyrosine kinase, synergizes with anti-V7 to inhibit T cell activation. On the basis of these findings, V7-mediated signals appear to inhibit TCR-dependent tyrosine kinases that are required for IL-2 production and cellular proliferation.  相似文献   

7.
Beta1 integrins can provide T cell co-stimulation, but little is known concerning their downstream signaling pathways. We found that Pyk2, a focal adhesion kinase-related tyrosine kinase, is regulated by beta1 integrin signaling in human T cells. Stimulation of Jurkat T cells with the alpha4beta1 integrin ligand VCAM-1 results in Pyk2 tyrosine phosphorylation, and combined stimulation with VCAM-1 and anti-CD3 mAb induces rapid and sustained synergistic Pyk2 phosphorylation. Studies with mAb suggest that in synergistic CD3- and alpha4beta1 integrin-mediated Pyk2 tyrosine phosphorylation, a major contribution of CD3-derived signals is independent of their effects on regulating integrin adhesion. Analysis of resting human CD4+ T cells confirmed the ability of CD3-derived signals to synergize with beta1 integrin-dependent signals in the induction of Pyk2 tyrosine phosphorylation. In addition, although CD28-mediated co-stimulatory signals were able to synergize with CD3-mediated signals in inducing ERK and JNK activation and secretion of IL-2 in the primary T cells, they did not contribute to the induction of Pyk2 phosphorylation. Taken together, these results indicate a potential role for Pyk2 in T cell co-stimulation mediated specifically by beta1 integrins.  相似文献   

8.
Ligation of the TCR or CD28 induces activation of phosphatidylinositol 3-kinase (PI3K), the TEC family protein tyrosine kinase, EMT/ITK/TSK (EMT), and the SRC family tyrosine kinase, LCK. LCK is required for the activation and phosphorylation of EMT induced by ligation of the TCR or CD28 placing LCK upstream of EMT in T cell signaling cascades. We report herein that inhibition of PI3K activity with the specific inhibitors LY294002 and wortmannin markedly decreased EMT activation induced by CD28 cross-linking but not by CD3 cross-linking. Further, inhibition of PI3K markedly decreased EMT in vitro autokinase activity induced by activated LCK. In contrast, PI3K inhibitors did not alter CD28 or CD3 cross-linking or LCK-induced EMT phosphorylation. Consistent with the requirement of PI3K activity for CD28 but not CD3-induced stimulation of the EMT in vitro autokinase activity, a small but significant portion of cellular EMT associates with PI3K following CD28 cross-linking but not following CD3 cross-linking. CD28-induced association of EMT with PI3K also requires functional expression of LCK. Fusion proteins containing the SRC homology 2 domain of EMT interact with PI3K or a PI3K-associated molecule in a tyrosine phosphorylation-dependent manner. Taken together, the data suggest that EMT is differentially regulated and recruited to different signaling complexes following ligation of CD28 or the TCR complex, perhaps contributing to the disparate roles that EMT appears to play downstream of CD28 and the TCR.  相似文献   

9.
10.
CD5 attenuates TCR-induced signals in immature thymocytes but functions as a costimulatory molecule potentiating TCR/CD3-mediated activation in mature, peripheral T cells. We have recently shown that the serine/threonine kinase, casein kinase 2 (CK2), a major regulator of cell growth and signaling, associates with and is activated by CD5. Therefore, we tested the possibility that differential regulation of CK2 activity by CD5 may be associated with these differences in CD5 modulation of TCR signaling. Consistent with our hypothesis, CD5-specific cross-linking activated associated CK2 in thymocytes but not active in mature splenocytes. Differential regulation of CD5-associated CK2 provides, for the first time, a potential mechanism for the differential effects of CD5 signaling in immature and mature cells. We propose that CD5 modulates Ag receptor activity through developmentally regulated activation of CD5-associated CK2.  相似文献   

11.
CD38 is a multifunctional membrane surface glycoprotein expressed by different cells and tissues, including T cells at certain stages of their development. Besides its involvement in transmembrane signaling, CD38 play a role in cell adhesion processes. Structurally, membrane CD38 was reported as presenting lateral associations with molecules involved in recognition and signaling, namely with the TCR/CD3 complex in T cells. Here we report that ligation of CD38 by agonistic and non-agonistic monoclonal antibodies exerts different effects on T cells, the former inducing down-modulation of the associated molecules, probably through a protein kinase C-dependent mechanism. This observation supports the view that the reduced expression of TCR/CD3 is secondary to interplay with CD38-mediated signaling, which partially overlaps with the CD3-mediated pathway. CD3 ligation by monoclonal antibodies leads not only to the expected internalization of the TCR/CD3 complex but also to down-modulation of surface CD38. The results obtained indicate that CD38 is closely associated with the CD3/TCR complex and that co-modulation of CD38 with TCR/CD3 is a critical step in signaling processes on T lymphocytes.  相似文献   

12.
This study compares the biochemical responses in T cells activated with the CD28 ligands B7-1 and B7-2. The patterns of tyrosine phosphorylation induced in T cells by these two CD28 ligands are identical, but clearly different from the tyrosine phosphorylation induced by the T cell receptor (TCR). The TCR regulates protein complexes mediated by the adapter Grb2 both in vivo and in vitro. In contrast, there is no apparent regulation of in vivo Grb2 complexes in response to B7-1 or B7-2. Rather, B7-1 and B7-2 both induce tyrosine phosphorylation of a different adaptor protein, p62. The regulation of p62 is a unique CD28 response that is not shared with the TCR. These data indicate that B7-1 and B7-2 induce identical tyrosine kinase signal transduction pathways. The data show also that the TCR and CD28 couple to different adapter proteins, which could explain the divergence of TCR and CD28 signal transduction pathways during T cell activation.  相似文献   

13.
When HIV-infected leukocytes are activated by the CD28 costimulatory receptor, HIV-1 is rapidly cleared from cultures, suggesting that costimulation can render T cells resistant to HIV-1 infection. In this study we tested the hypothesis that enhanced secretion of cytokines or chemokines could account for CD28-induced antiviral effects. In an acute infection system, resistance to infection with macrophage-tropic strains of HIV-1 was shown to be comprised of both soluble and cell-associated components. Induction of HIV-1 resistance was specific for CD28 costimulation, in that a variety of other accessory receptors, such as CD2, CD4, CD5, and MHC class I, failed to confer the antiviral resistance. The soluble component was secreted by both CD4 and CD8 T cells, was not unique to CD28 costimulation, and could be neutralized by removal of C-C chemokines (RANTES (regulated upon activation, normal T cell expressed and secreted) and macrophage inflammatory protein-1alpha and -1beta) from the culture supernatants of costimulated CD4 T cells. In contrast, CD28 stimulation of CD4 cells resulted in the specific induction of a pronounced intrinsic resistance to HIV-1 infection by macrophage tropic isolates of HIV-1.  相似文献   

14.
CD28 is a major coreceptor that regulates cell proliferation, anergy, and viability of T cells. The negative selection by T-cell receptor (TCR)-induced cell death of immature thymocytes as well as of activated human antigen-specific T-cell clone, requires a costimulatory signal that can be provided by CD28. Conversely, CD28-mediated signals increase expression of Bcl-XL, a survival gene, and promote survival of naive T cells cultured in the absence of antigen or costimulation. Because CD28 appears to both protect from, or induce T-cell death, one important question is to define the activation and cellular parameters that dictate the differential role of CD28 in T-cell apoptosis. Here, we compared different CD28 ligands for their ability to regulate TCR-induced cell death of a murine T-cell hybridoma. In these cells, TCR triggering induced expression of Fas and FasL, and cell death was prevented by anti-Fas blocking monoclonal antibody (MoAb). When provided as a costimulus, both CD28 MoAb and the B7.1 and B7.2 counter receptors downregulated, yet did not completely abolish T-cell receptor-induced apoptosis. This CD28 cosignal resulted in both upregulation of Bcl-XL and prevention of FasL expression. In marked contrast, when given as a single signal, CD28 MoAb or B7.1 and B7.2 induced FasL expression and resulted in T-cell death by apoptosis, which was dependent on the level of CD28 ligation. Furthermore, triggering of CD28 upregulated FasL and induced a marked T-cell death of previously activated normal peripheral T cells. Our results identify Fas and FasL as crucial targets of CD28 in T-cell death regulation and show that within the same cell population, depending on its engagement as a single signal or as a costimulus together with the TCR, CD28 can either induce a dose-dependent death signal or protect from cell death, respectively. These data provide important insights into the role of CD28 in T-cell homeostasis and its possible implication in neoplastic disorders.  相似文献   

15.
One of the functions of surface CD38 is the induction of phosphorylation of discrete cytoplasmic substrates and mobilization of cytoplasmic calcium (Ca2+). The present work addresses the issue of whether the signaling mediated via CD38 operates through an independent pathway or, alternatively, is linked to the TCR/CD3 signaling machinery. We studied the signals elicited through CD38 by the specific agonistic IB4 monoclonal antibody (mAb) by monitoring the levels of cytoplasmic Ca2+ and the induced phenotypic and functional variations in T cell growth. IB4 mAb presented the unique ability to increase cytoplasmic Ca2+ levels, which correlated with the phosphorylation of the PLC-gamma1. These effects were blocked by phorbol 12-myristate 13-acetate (PMA) and were dependent on the presence of a functional TCR/CD3 surface complex, no effects being recorded on mutant Jurkat cells lacking part of the CD3 structures. CD38 signaling appeared to share with TCR/CD3 the ability to induce apoptotic cell death in Jurkat T cells, an event paralleled by specific up-regulation of the Fas molecule and inhibited by cyclosporin A. CD28, a costimulatory molecule, is synergized by increasing CD38-induced apoptotic cell death. The results indicate the existence of a strong functional interdependence between CD38 and TCR/CD3.  相似文献   

16.
Cytotoxic T lymphocyte-associated molecule-4 (CTLA-4) is a cell surface receptor expressed on activated T cells that can inhibit T cell responses induced by activation of the TCR and CD28. Studies with phosphorylated peptides based on the CTLA-4 intracellular domain have suggested that tyrosine phosphorylation of CTLA-4 may regulate its interactions with cytoplasmic proteins that could determine its intracellular trafficking and/or signal transduction. However, the kinase(s) that phosphorylate CTLA-4 remain uncharacterized. In this report, we show that CTLA-4 can associate with the Src kinases Fyn and Lck and that transfection of Fyn or Lck, but not the unrelated kinase ZAP70, can induce tyrosine phosphorylation of CTLA-4 on residues Y201 and Y218. A similar pattern of tyrosine phosphorylation was found in pervanadate-treated Jurkat T cells stably expressing CTLA-4. Phosphorylation of CTLA-4 Y201 in Jurkat cells correlated with cell surface accumulation of CTLA-4. CTLA-4 phosphorylation induced the association of CTLA-4 with the tyrosine phosphatase SHP-2, but not with phosphatidylinositol 3-kinase. In contrast, Lck-induced phosphorylation of CD28 resulted in the recruitment of phosphatidylinositol 3-kinase, but not SHP-2. These findings suggest that phosphorylation of CD28 and CTLA-4 by Lck activates distinct intracellular signaling pathways. The association of CTLA-4 with Src kinases and with SHP-2 results in the formation of a CTLA-4 complex with the potential to regulate T cell activation.  相似文献   

17.
Overexpression of the transmembrane protein-tyrosine phosphatase (PTPase) CD45 in nonhematopoietic cells results in decreased signaling through growth factor receptor tyrosine kinases. Consistent with these data, insulin receptor signaling is increased when the CD45-related PTPase LAR is reduced by antisense suppression in a rat hepatoma cell line. To test whether the hematopoietic cell-specific PTPase CD45 functions in a manner similar to LAR by negatively modulating insulin receptor signaling in hematopoietic cells, the insulin-responsive human multiple myeloma cell line U266 was isolated into two subpopulations that differed in CD45 expression. In CD45 nonexpressing (CD45-) cells, insulin receptor autophosphorylation was increased by 3-fold after insulin treatment when compared to CD45 expressing (CD45+) cells. This increase in receptor autophosphorylation was associated with similar increases in insulin-dependent tyrosine kinase activation. These receptor level effects were paralleled by postreceptor responses. Insulin-dependent tyrosine phosphorylation of insulin receptor substrate 1 (IRS-1) and Shc was 3-fold greater in CD45- cells. In addition, insulin-dependent IRS-1/phosphatidylinositol 3-kinase association and MAP kinase activation in CD45- cells were also 3-fold larger. While expression of CD45 was associated with a decrease in the responsiveness of early insulin receptor signaling, interleukin 6-dependent activation of mitogen-activated protein kinase kinase and mitogen-activated protein kinase was equivalent between CD45- and CD45+ cells. These observations indicate that CD45 can function as a negative modulator of growth factor receptor tyrosine kinases in addition to its well-established role as an activator of src family tyrosine kinases.  相似文献   

18.
Clonal expansion of activated T and B cells is controlled by homeostatic mechanisms resulting in apoptosis of a large proportion of activated cells, mostly through interaction between CD95 (Fas or Apo-1) receptor and its ligand CD95-L. CD2, which is considered as a CD3/TCR alternative pathway of T cell activation, may trigger activation-induced cell death, but the role of CD95/CD95-L interaction in CD2-mediated apoptosis remains controversial. We show here that the CD2R mAb YTH 655.5, which does not induce comitogenic signals when associated with another CD2 mAb, triggers CD95-L expression by preactivated but not resting T cells, resulting in CD95/CD95-L-mediated apoptosis. The critical role of CD95/CD95-L interaction was supported by complete inhibition in the presence of the antagonist CD95 mAb ZB4 and by blocking CD95-L synthesis and surface expression by cycloheximide, cyclosporin A, EGTA, or cytochalasin B. YTH 655.5 was shown to stimulate p56lck phosphorylation and enzymatic activity. However, p56lck activation is not sufficient to trigger apoptosis, because other CD2R and CD4 mAbs that activate p56lck do not induce apoptosis. In conclusion, CD2 can mediate nonmitogenic signals, resulting in CD95-L expression and apoptosis of CD95+ cells.  相似文献   

19.
T cell activation and clonal expansion is the result of the coordinated functions of the receptors for antigen and interleukin (IL)-2. The protein tyrosine kinase p56(lck) is critical for the generation of signals emanating from the T cell antigen receptor (TCR) and has also been demonstrated to play a role in IL-2 receptor signaling. We demonstrate that an IL-2-dependent, antigen-specific CD4(+) T cell clone is not responsive to anti-TCR induced growth when propagated in IL-2, but remains responsive to both antigen and CD3epsilon-specific monoclonal antibody. Survival of this IL-2-dependent clone in the absence of IL-2 was supported by overexpression of exogenous Bcl-xL. Culture of this clonal variant in the absence of IL-2 rendered it susceptible to anti-TCR-induced signaling, and correlated with the presence of kinase-active Lck associated with the plasma membrane. The same phenotype is observed in primary, resting CD4(+) T cells. Furthermore, the presence of kinase active Lck associated with the plasma membrane correlates with the presence of ZAP 70-pp21zeta complexes in both primary T cells and T cell clones in circumstances of responsive anti-TCR signaling. The results presented demonstrate that IL-2 signal transduction results in the functional uncoupling of the TCR complex through altering the subcellular distribution of kinase-active Lck.  相似文献   

20.
Costimulation was originally defined and characterized during primary T cell activation. The signaling events that regulate subsequent antigen encounters by T cells are less well defined. In this study we examined the role of CD30 in T cell activation and defined factors that regulate expression of CD30 on T cells. We demonstrate that CD30 expression is restricted to activated T cells and regulated by CD28 signal transduction. In contrast to CD28-expressing TCR Tg cells, CD28-deficient TCR Tg cells did not express CD30 when cultured with peptide and APCs. However, rIL-4 reconstituted CD30 expression on CD28-deficient TCR Tg cells. Blockade of CD28 interactions or depletion of IL-4 inhibited the induction of CD30, suggesting that both CD28 and IL-4 play important roles in the induction of CD30 expression on wild-type cells. However, CD28 signaling did not up-regulate CD30 expression solely through its ability to augment IL-4 production because IL-4-deficient T cells stimulated with anti-CD3 and anti-CD28 expressed CD30. Induction of CD30 in the absence of IL-4 was not due to the IL-4-related cytokine IL-13. CD30, when expressed on an activated T cell, can act as a signal transducing receptor that enhances the proliferation of T cells responding to CD3 crosslinking. Collectively, the data suggest that T cell expression of CD30 is dependent on the presence of CD28 costimulatory signals or exogenous IL-4 during primary T cell activation. Once expressed on the cell surface, CD30 can serve as a positive regulator of mature T cell function.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号