首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
刘乾静  陈晓淼  王芷  史吉平  李保国  刘莉 《化工进展》2022,41(10):5612-5618
为高效去除木质纤维素中的木质素,获得富含纤维素的底物,实现木质纤维素组分的单一分离与组分全利用,制备合成了6种三元低共熔溶剂(deep eutectic solvent, DES),利用DES预处理已去除半纤维素的杨木水解渣,研究了6种低共熔溶剂对木质素去除和纤维素保留的影响,并优化获得了最佳的预处理工艺参数。结果表明,6种DES中苄基三乙基氯化铵-乙二醇-氯化铁(T-EG-Fe)的预处理效果最优,木质素去除率为80.46%,纤维素保留率为90.81%。优化得到T-EG-Fe预处理杨木水解渣最佳工艺条件为:反应固液比为1∶15,反应温度为130℃,反应时间为5h,在最优条件下预处理得到的固体残渣中纤维素质量分数为92.78%,木质素质量分数为5.33%。T-EG-Fe具有高效拆解木质素的潜力,在木质纤维素预处理过程中具有一定的应用价值。  相似文献   

2.
纤维素作为一种丰富的可再生资源,水解技术的低转化率和产物分离困难严重制约了它的广泛应用。合成具有温控特性的绿色双相低共熔溶剂(DESs),并将其应用于纤维素水解研究。利用傅里叶红外、原位红外、核磁、紫外分光光度等分析方法监测反应过程和检测反应产物,推测纤维素的转化机理。在癸酸/L-脯氨酸亲水相DESs、氯化胆碱/对甲苯磺酸一水合物疏水相DESs摩尔比1∶1,反应温度80℃,反应时间90 min的条件下,纤维素转化率可达到67%。反应结束后产物可在室温下自动分离。双相DESs在实现纤维素的高效转化下,比传统硫酸水解工艺更安全,环境危害也更小。  相似文献   

3.
综述了天然低共熔溶剂在木质纤维素预处理应用的研究进展,归纳了熔点、密度、黏度、溶解性四大理化性质,总结了羧酸类、多元醇类这两种二元天然低共熔溶剂、三元天然低共熔溶剂在木质纤维素类生物质预处理中的应用,并概括了微波超声辅助预处理、多元天然低共熔溶剂协同预处理、两阶段协同预处理在木质纤维素类生物质预处理中的应用,分析并展望了未来天然低共熔溶剂的研究方向,为采用绿色新型溶剂预处理木质纤维素类生物质提供新思路。  相似文献   

4.
近年来,低共熔溶剂(deep eutectic solvent,DES)以易制备、成本低、易回收等优势,在生物质预处理方面受到广泛关注。本研究以氯化胆碱为氢键受体,乙醇胺为氢键供体,合成DES,研究了不同温度、时间和固液比预处理条件对中药渣组分和酶解效果的影响。结果表明:固液比1∶20、120℃、预处理4h后原料中木质素去除率达到78.42%,纤维素回收率为83.89%。随后对不同条件下所得底物进行酶水解,反应96h后发现,较优条件下所得底物酶解效率为78.57%,较未处理中药渣(30.40%)提高了1.58倍。类分形动力学分析表明,预处理温度对酶解效果影响最大。SEM、XRD和FTIR检测发现,预处理后底物形貌、结晶指数和官能团变化有利于酶解效果的提高。  相似文献   

5.
白腐菌预处理对稻草化学组分及酶水解的影响   总被引:2,自引:0,他引:2  
采用5株白腐菌预处理稻草,对预处理过程中产生的木质纤维素降解酶系以及稻草化学组分变化进行了分析,研究了预处理对后续纤维素酶水解效率的影响。研究结果表明,5株白腐菌在预处理期间(0~50天)均能检测到漆酶(Lac)、锰过氧化物酶(MnP)和纤维素酶(Cel)活性,但未检测到木质素过氧化物酶(LiP)活性。其中凤尾菇培养第20天Lac活性达到最高,为2244 U/L;平菇培养40天MnP活性最高,达771 U/L;凤尾菇和平菇的木质素降解选择性指数(SI)随着预处理时间延长呈上升趋势,培养至50天时平菇的SI达到1.87,比其它4株白腐菌表现出更好的选择性降解木质素能力。云芝4号、平菇和凤尾菇表现出良好的预处理效果,经此3菌株预处理50天的稻草粉,在每克底物20 FPU酶用量条件下用纤维素酶水解48 h,酶水解总糖转化率分别达到59.6%、56.3%和54.4%。  相似文献   

6.
木质纤维素生物质转化为生物燃料或化工产品一般需经历预处理、酶解及发酵过程,因其复杂的化学结构,在酶解前通常进行预处理以破坏其致密结构,提高酶与纤维素的可及性。深度共熔溶剂(DES)是一类新型的“绿色”溶剂,具有制备简单、价格低廉、性质可调、可生物降解、可循环使用等优势,可有效去除木质素组分,同时保留大部分纤维素,在生物质预处理方面具有巨大的潜力。本文介绍了DES的构成、分类及理化性质,总结了DES预处理对生物质组分的影响,并对预处理效果的影响因素如底物和DES的类型、溶剂黏度、温度、生物载量、微波及超声波辅助工艺和两阶段处理工艺等方面进行分析,探讨了DES和生物的相容性,最后针对DES存在的问题及缺点,提出了理性设计和大规模利用DES的机遇与挑战,本文可为实现生物质的低成本预处理和高价值利用提供新的思路。  相似文献   

7.
李浩  邢婉茹  许国超  倪晔 《化工进展》2020,39(12):5211-5218
随着传统化石能源日趋枯竭,木质纤维素生物质等可再生资源的综合利用得到越来越多的关注。为了更好地利用木质纤维素生物质,采用物理、化学或生物方法降低其结构顽抗性是必不可少的步骤。在前期研究中,本文作者所在实验室发现了一种乙胺盐酸盐为氢键受体、乳酸为氢键供体的新型低共熔溶剂(EaCl∶LAC),其对玉米芯有很好的去除半纤维素的作用。本文将EaCl∶LAC用于预处理水稻秸秆,并结合碱性氧化剂NaClO,进一步提高了木质素的去除率。在最优条件下,经EaCl∶LAC/NaClO预处理后水稻秸秆的半纤维素和木质素的去除率分别为94.9%和80.2%。将预处理后水稻稻秆经纤维素酶解可得到总还原糖浓度为60.46g/L的秸秆水解液。采用梭菌Clostridium saccharobutylicum DSM13864利用稻秆水解液进行丁醇发酵,72h后丁醇浓度为10.16g/L,丁醇的糖醇产率为0.22g/gtotal sugar。本文提供了一种提高木质纤维素生物质酶解效率和水解液还原糖浓度的方法,无需外源添加葡萄糖和脱毒处理,可直接用于发酵合成生物丁醇。  相似文献   

8.
综述了一种新型绿色低共熔溶剂(Deep Eutectic Solvents, DES)预处理木质纤维素的研究进展。DES具有价格低廉、毒性小、易生物降解和易合成等优势,用于木质纤维素预处理可以在保留纤维素的同时,选择性去除木质素和半纤维素,极大提高后续纤维素酶解过程中的糖化率。重点介绍了有机酸和多元醇类DES预处理木质纤维素、不同DES预处理效果比较以及这两大类DES组合其他预处理等方面取得的研究进展,并对DES预处理机理及构效关系、DES循环使用、DES木质素的分离及高值化利用做了展望。  相似文献   

9.
改变酶水解p H值可以影响木质纤维生物质碳水化合物的酶水解糖化作用效果。以经酸性亚硫酸氢盐预处理的杨木浆为底物,探究了酶水解p H值对其碳水化合物转化率的影响。结果表明,预处理杨木浆的酶水解总糖得率随p H值增加呈现先升高后趋于平缓的规律,酶水解最佳p H值范围为4.8~5.4。当酶水解液p H值为4.8时,经6%亚硫酸氢钠预处理杨木浆在20 FPU/g酶用量下水解,葡聚糖和总糖转化率达到最高值,分别为91.3%和84.3%。  相似文献   

10.
纤维素的可及性是纤维原料中与纤维素酶结合且能够被酶处理的结合位点量,与纤维原料中的粒径和孔隙度有关,纤维素的可及性是影响纤维素酶水解的关键因素。综述了当前纤维素可及性的测定方法,包括氮吸附法、水银压入法、溶质排斥法、蛋白质吸附法、Simons法等,总结了通过提高纤维素可及性来实现高效生物转化的预处理技术,并给出当前生物乙醇转化的可能研究方向。  相似文献   

11.
用氨水与双氧水预处理大米草,与原料大米草一起进行球磨,用于木聚糖酶的协同酶解。结果表明,氨水结合双氧水预处理能有效脱除大米草中的木质素(63.81%),球磨处理能对纤维素结晶结构有所破坏,两者均可有效提高木聚糖酶的水解率。酶水解物主要成分为木糖(12.54%)、木二糖(40.38%)及少量阿拉伯糖(5.50%)。碱预处理结合球磨预处理,对木聚糖酶协同水解大米草产木寡糖具有明显的促进作用。  相似文献   

12.
用氨水与双氧水预处理大米草,与原料大米草一起进行球磨,用于木聚糖酶的协同酶解。结果表明,氨水结合双氧水预处理能有效脱除大米草中的木质素(63.81%),球磨处理能对纤维素结晶结构有所破坏,两者均可有效提高木聚糖酶的水解率。酶水解物主要成分为木糖(12.54%)、木二糖(40.38%)及少量阿拉伯糖(5.50%)。碱预处理结合球磨预处理,对木聚糖酶协同水解大米草产木寡糖具有明显的促进作用。  相似文献   

13.
玉米芯氨水预处理及酶解工艺研究   总被引:3,自引:0,他引:3  
为有效提高木质纤维素酶解转化率,文中以玉米芯为研究对象,在常压中温下采用氨水浸泡工艺处理原料,考察了预处理条件对木质素脱除率和纤维素、半纤维素酶解转化率的影响规律。确定了最适预处理条件:氨水质量分数为15%、固液质量体积比为1∶6 g/mL、反应温度为60℃和预处理时间为12 h。该条件下纤维素、半纤维素回收率和木质素脱除率分别为94.5%,86.7%和48.1%;在每g葡聚糖加入30 FPU纤维素酶和60 CBUβ-葡萄糖苷酶条件下,酶解24 h后纤维素和半纤维素酶解转化率分别可达83.0%和81.6%。  相似文献   

14.
谢永红 《山东化工》2015,(4):27-29,32
为了研究果皮废弃物(柚子皮、橘子皮、香蕉皮)Na OH预处理与酶水解的效率,探讨三种果皮混合酶水解的可行性。第一步选择原料进行前处理和不同浓度(0.5%、1%的Na OH)的碱预处理;第二步通过选取较优预处理(1%的Na OH预处理)样品,根据配方试验设计的单纯形格子点设计的方法制样,建立混合样品比例进行酶水解实验分析。通过测定计算样品水解率,得出酶Accellerase1500对香蕉皮的选择性最强;验证了三种果皮混合酶水解的可行性,对实际的生物质乙醇的生产具有重要的参考价值。  相似文献   

15.
采用分段酶水解木质纤维原料的方法,以NaOH-Fenton试剂预处理桑木为原料,通过在反应过程中及时移除葡萄糖和纤维二糖,减轻产物的抑制作用,最终达到提高酶水解得率和缩短酶解反应时间的目的。实验结果表明:纤维素酶用量为15FPIU/g(以纤维素计,下同)时,在三段(8+8+8h)水解过程中,经第一段水解,纤维素酶反应速率从1.25g/(L·h)提高到2.21g/(L·h),第二段水解后,酶反应速率为1.54g/(L·h),比未分段水解的酶反应速率提高了73%;当纤维素酶用量为40FPIU/g时,三段(8+8+8h)水解得率增至88.08%;三段(8+8+8h)水解充分利用了酶解残渣上的结合酶进行后续水解。对纤维素酶在预处理桑木上的吸附情况进行研究,发现桑木经NaOH-Fenton试剂预处理后,对纤维素酶的最大吸附量为8.08mg/g,预处理增加了纤维素酶与桑木间的吸附位点。  相似文献   

16.
纤维素的酶水解糖化   总被引:23,自引:2,他引:23  
纤维素为自然界存在最多的再生有机资源,能水解成葡萄糖,加工成食品、燃料、化工产品等。酸和酶都能催化水解,但酶法效果好,所得水解液的纯度高。多年来对于纤维素的酶法水解研究工作很多,但还有若干问题有待解决,尚未发展成适于工业生产应用的好工艺。本文扼要地综述纤维素的酶水解机理和纤维素物料的应用工艺。纤维素酶系内切葡聚糖酶、外切葡聚糖酶和β-葡萄糖甙酶的混合物,这三种酶协同起水解作用。纤维素物料不纯,还有伴生物半纤维素和木质素共同存在,需要预先处理,破坏纤维素的结晶性,提高水解效能,分离开半纤维素和木质素,加以好的利用,提高经济效益。  相似文献   

17.
以稻草秸秆为原料经碱性臭氧预处理后进行酶水解,研究了处理前后稻草秸秆半纤维素、纤维素、木质素含量的变化,通过测定酶水解还原糖含量来判断预处理的效果。结果表明,碱性臭氧预处理与碱预处理相比,在稻草秸秆木质素含量与降解上没有什么差异,但酶水解糖化效果更优。经O3/2%NaOH预处理过的稻草秸秆,在pH值5.0、酶用量31.2mg.(g底物)-1、45℃条件下酶水解120h时,还原糖含量达到了902mg.(g稻草秸秆)-1,糖化率达到了92.57%。  相似文献   

18.
对SFP-AQ法(亚硫酸钠和甲醛―蒽醌)预处理麦秸秆酶解葡萄糖得率进行了研究。结果表明:葡萄糖得率随着预处理中Na2SO3用量的增加先升高后降低,在12%时葡萄糖得率最高;葡萄糖得率随着酶用量的增加而迅速升高,当酶用量超过20 FPU/g时,提高缓慢;蒸煮最高温度和保温时间对葡萄糖得率的影响不明显。较适宜的预处理和酶解条件分别为:蒸煮最高温度150℃,保温时间1 h,Na2SO3用量为12%,纤维素酶、木聚糖酶、β-纤维二糖酶三种复合酶用量为20 FPU/g。此时,葡萄糖得率可达到31.7%,酶解葡萄糖对原料中葡萄糖的转化率为91.6%。  相似文献   

19.
麦草是一种具有很大潜力的制取生物乙醇的可再生木质纤维素原料。文章探讨了碳酸钠预处理预浸时间、保温时间、碳酸钠用量对麦草化学成分及酶水解效率的影响。结果表明,延长碳酸钠预处理保温时间对木质素脱除无明显影响,但浆料得率和酶水解总糖转化率有所下降;合理的预浸时间为30 min,继续延长预浸时间对预处理浆料酶水解总糖转化率无促进作用;增加预处理Na2CO3用量有助于促进木质素的脱除,大部分碳水化合物保留在浆料中。在8% Na2CO3(Na2O计)用量下,麦草于80℃预浸30 min后升温至130℃,不保温所得到的浆料在纤维素酶用量为20 FPU/g(对纤维素)时,其总糖转化率为60%。  相似文献   

20.
不同预处理方法对玉米秸秆吐温-80/酶水解的影响   总被引:1,自引:1,他引:0  
比较了稀硫酸、氢氧化钠、氨水和氢氧化钙4种预处理方法对玉米秸秆吐温-80/酶水解的影响,结果表明:氢氧化钠预处理方法效果最佳,得到的总还原糖产率比未处理时提高了10.7倍.其红外光谱和广角X-谢线衍射谱图表明:经氢氧化钠预处理后,玉米秸秆中的木质素含量降低了62%,纤维素的结晶度也有所降低.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号