共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
用二氧化碳作为发泡剂,利用串联发泡挤出系统研究了聚丙烯(PP)/聚二甲基硅氧烷(PDMS)混合物的膨胀比及泡孔密度,同时用马来酸酐接枝PP(PP-g-MAH)作为增容剂来提高PDMS与PP的相容性。结果表明,混合物的最大膨胀比可达25倍,而纯PP的最大膨胀比只有8倍。另外,与纯PP相比,混合物的泡孔密度显著提高(尤其是在低发泡剂浓度时)。 相似文献
3.
以AC发泡剂对聚丙烯(PP)/改性纳米CaCO3发泡体系进行挤出发泡,对发泡体系进行单因素轮换法实验,通过观察纵截面泡孔形态,分析各工艺参数对泡孔形态的影响规律,利用正交实验与实验统计软件相结合的方法对实验数据进行回归,得到泡体平均直径、泡孔面积比的预测模型,并进行了实验验证.通过模型预测最佳的加工参数范围,可对实验和... 相似文献
4.
5.
6.
以BIH40为发泡剂,采用挤出成型工艺,分别制备了聚丙烯(PP),低密度聚乙烯(PE–LD)和聚乳酸(PLA)挤出发泡材料,研究了发泡剂含量和螺杆转速对这3种发泡材料挤出发泡性能的影响。结果表明,当螺杆转速为26 r/min时,随着发泡剂含量从0.5%增加到2.0%,3种发泡材料的发泡倍率均逐渐增大,PP和PE–LD的泡孔平均尺寸也增大,而PLA的泡孔尺寸先增大后减小。当发泡剂质量分数为2.0%时,随着螺杆转速从26 r/min提高到42 r/min,PP的发泡倍率增大,泡孔平均尺寸减小;PE–LD的发泡倍率和泡孔平均尺寸均先增大后减小;PLA的发泡倍率基本不变,泡孔平均尺寸略有下降。当发泡剂BIH40质量分数为2.0%时,在相同螺杆转速下,PLA的发泡性能要优于PP和PE–LD,其泡孔尺寸较PP和PE–LD更小更均匀,单位面积上的泡孔数量明显高于PP和PE–LD。 相似文献
7.
采用超临界二氧化碳间歇式发泡法,成功制备了聚丙烯(PP)、PP/POE(乙烯-辛烯共聚物)微孔发泡材料.研究了发泡温度、饱和压力、POE含量对PP复合材料发泡性能的影响,并且,通过研究发泡材料的微观形貌、泡孔直径和膨胀倍率,得到最佳POE添加量.结果表明,在156℃、20 MPa条件下,PP可形成泡孔直径均一、高体积膨胀比的闭孔结构材料.加入POE后,PP复合材料的发泡性能得到改善,对发泡区间影响显著,PP/POE(80:20)的发泡温度区在40℃以上;PP/POE(80:20)随着发泡温度的上升,泡孔平均直径先增加后下降,泡孔密度和体积膨胀比逐渐增大;在120℃、20 MPa条件下,添加20%POE,得到了发泡范围大且泡孔均一性较好的发泡材料,泡孔密度为1.13 × 1011个/cm3,泡孔孔径为 2.81 μm. 相似文献
8.
采用化学发泡法制备出聚丙烯/纳米二氧化硅(PP/nano-SiO2)微发泡复合材料,探讨了不同模具温度对PP/nano-SiO2发泡行为的影响。结果表明:模具温度对PP/nano-SiO2发泡材料发泡行为的影响主要体现在2个方面:一方面,影响PP/nano-SiO2复合发泡材料的泡孔结构参数,随模具温度升高,熔胶散热越慢,泡孔的直径越大,泡孔密度越小,分散状态越不稳定;另一方面,影响PP/nano-SiO2发泡材料制品内部区域面积,及随模具温度升高,发泡面积越大。发泡材料的冲击强度和拉伸强度随模具温度的升高明显下降。 相似文献
9.
10.
11.
采用扩链剂对聚乳酸(PLA)进行扩链改性,研究了扩链剂对PLA流变性能的影响。采用3种不同类型的化学发泡剂:发泡剂A(发泡母粒)、发泡剂B\[自制复合发泡剂:偶氮二甲酰胺(AC发泡剂)/碳酸氢钠(NaHCO3)\]、发泡剂C(自制改性AC发泡剂),利用单螺杆挤出机对PLA进行挤出发泡。采用扫描电子显微镜观察分析了发泡材料的断面泡孔结构。结果表明,加入扩链剂可有效提高PLA的熔体强度和黏度及降低其熔体流动速率,改善PLA的发泡效果,扩链剂含量为0.8份(质量分数,下同)时,发泡材料的发泡效果最好;实验所用的3种发泡剂中,发泡剂C的发泡效果最好,发泡剂含量为1.5份时,发泡样品的表观密度较小(0.6 g/cm3),泡孔直径最小(约为57 μm),泡孔密度最大(约为7.69×10^6个/cm3),泡孔分布均匀,无明显泡孔破裂和连通现象。 相似文献
12.
13.
14.
用单螺杆挤出装置,以CO2为发泡剂,对聚丙烯(PP)/CaCO3复合材料进行挤出发泡;采用正交法设计实验,利用Design-Expert统计软件对实验数据进行统计处理,观察制品纵截面上泡体的形态变化,从而得到加工工艺参数对泡体形态的影响规律,回归拟合得到泡孔平均直径、面密度、形变程度和倾向角的预测模型,并进行实验验证;最后用回归模型求解出较合适的加工参数范围。结果表明,转速为46~52 r/min、机头温度为170 ℃、熔体温度为180~189 ℃、CaCO3含量为6.67 %~7.9 %时,可得到较好的PP/CaCO3发泡制品。 相似文献
15.
16.
17.
利用线性聚丙烯(PP)和有机化处理的纳米蒙脱土(nano-OMMT)在双螺杆挤出机上熔融插层法制备了PP/nano-OMMT复合材料。通过在PP/nano-OMMT复合材料中加入少量的高熔体强度聚丙烯(HMS-PP)以及复合发泡剂,通过连续挤出制备了PP/HMS-PP/nano-OMMT发泡棒材。利用扫描电镜观察了不同HMS-PP和不同的OMMT含量对发泡棒材发泡行为的影响,并利用透射电镜观察了OMMT在发泡制品中的分散及分布状况。结果表明:适量加入HMS-PP可以改善复合材料的发泡性能,所得发泡制品的泡孔密度增大,泡孔的合并现象明显改善;nano-OMMT在靠近泡孔壁面的位置有取向分布的趋势,这有利于得到闭孔形式的泡孔结构。 相似文献
18.
采用物理发泡剂和化学发泡剂的组合发泡剂对聚苯乙烯(PS)在串联挤出发泡机组中进行连续挤出发泡,探讨了不同含量发泡剂和不同发泡温度对PS发泡行为的影响。通过真密度测定仪和扫描电子显微镜对发泡制品的密度、发泡倍率和泡孔形态进行测试。研究结果表明,采用组合复合发泡剂后,PS发泡制品的泡孔密度明显提高,发泡倍率增加,泡体结构优于单独使用物理发泡剂或化学发泡剂的发泡制品。在发泡温度为120℃,CO2注气量为5 mL/min,化学发泡剂用量为3份,SiO2用量为1份时,样品具有最佳泡孔形态,发泡倍率为18.42,泡孔密度为3.53×106个/cm3。 相似文献
19.
以高熔体强度聚丙烯(PP)和乙烯–辛烯共聚物(POE)为主要原料,利用化学发泡法制备了PP/POE微发泡材料。研究了POE用量对PP/POE微发泡材料发泡性能、力学性能的影响;通过研究PP/POE微发泡材料的动态力学性能、结晶行为、泡孔结构,确定了POE的最佳用量。添加POE能改善微发泡材料的动态力学性能,同时将PP的结晶峰温度提升117.01℃,加快了PP的结晶过程,为PP发泡提供合适的内部条件,有效地减少了发泡时过发泡、并泡现象的产生。当POE质量分数为10%时,PP/POE微发泡材料的综合性能达到最优,其缺口冲击强度达到13.2kJ/m2,相比未添加POE的微发泡材料提升了约158.8%,泡孔平均直径减小到60μm左右,泡孔密度达到最大值,为1.19×106个/cm3。 相似文献
20.
本文以BIH40作为发泡剂,使用注塑方法化学发泡成型制备了PP、LDPE发泡材料,探讨了发泡剂含量对PP和LDPE发泡制品的密度、拉伸强度、缺口冲击强度等力学性能的影响,并用扫描电子显微镜(SEM)观测了断面的泡孔形貌。实验结果表明,随着发泡剂含量的增加,发泡试样的拉伸强度、冲击强度、断裂伸长率和密度等与未发泡试样相比总体呈现下降趋势,LDPE的断裂伸长率在发泡剂含量为1.0%(重量百分比wt.)时较其他发泡组分有所增加,PP的冲击强度在发泡剂含量为0.5%(重量百分比wt.)时与其他发泡组分相比有所提高。综合实验测试结果显示,发泡剂含量在1.0%(重量百分比wt.)时所得到的发泡制品力学性能较好。 相似文献