首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 119 毫秒
1.
《Wear》1986,110(1):1-17
The influence of displacement amplitude, normal load and frequency of oscillation on the contact conditions in fretting have been explored by analysis of dynamic tangential force measurements. The fretting characteristics of two materials, a low carbon steel (AISI 1018) and an austenitic stainless steel (AISI 304), were investigated using a crossed-cylinder testing geometry. It was found that three regimes of fretting can be distinguished with increasing displacement amplitude. The two low amplitude regimes are characterized by a condition of partial stick at the interface, the difference between the two regimes being as to whether the bulk displacement in the stick region is accommodated by predominantly elastic or plastic shear. In contrast, in the third, high amplitude, regime gross slip takes place over the whole contact area. In this paper the physical significance of the critical amplitudes that define the two fretting regime transitions is discussed. In particular, results on the relationships between the two critical amplitudes and the applied normal load and frequency of oscillation are given.  相似文献   

2.
基于双重扩展自适应卡尔曼滤波的汽车状态和参数估计   总被引:4,自引:0,他引:4  
准确实时地获取行驶过程中的状态信息是汽车动态控制系统研究的关键,为此提出了一种新的汽车状态估计器。建立了包含不准确模型参数和未知时变统计特性噪声的非线性汽车动力学模型,针对该非线性系统提出一种双重扩展自适应卡尔曼滤波算法(DEAKF)。该算法采用两个卡尔曼滤波器并行运算,状态估计和参数估计互相更新,同时将带遗忘因子的噪声统计估值器嵌入到状态校正过程和参数校正过程之间,以解决系统的噪声时变问题。基于ADAMS的虚拟试验和实车试验结果表明,该算法的状态估计精度高于EKF方法和DEKF方法的状态估计精度,同时具有良好的模型参数校正能力,对汽车动态控制系统中估计器的设计具有理论指导意义。
  相似文献   

3.
Fretting wear tests under grease lubrication have been carried out on an aluminium alloy, 52100 steel and low-alloy steel. The sphere–flat contact configuration is used. The influence of the displacement amplitude and normal load is investigated. Comparison between dry and lubricated contact of aluminium alloy, between 52100/52100 steel and 52100/low-alloy steel contact with grease lubrication has been carried out. Results show that grease lubrication strongly affects fretting behaviour. Base oil that separated from the grease during friction may result in accelerated contact wear by fretting.  相似文献   

4.
During fretting, small amplitude displacements and high normal surface loads combined with abrasive oxide particles cause surface damage that acts as initiation sites for fatigue cracks. Since these conditions are prevalent within the titanium dovetail joints of jet engines a wear mode analysis was performed on extended service jet engine disks and compressor blades. The results of the wear mode analysis indicated that titanium from the uncoated disk was transferred to the softer copper-nickel-indium coated dovetail surface of the blades. This transfer created titanium on titanium contact and eventually fretting wear. In order to simulate these conditions, a moderate displacement (125 μm), low cycle phase followed by a small displacement (25 μm), high cycle fretting phase utilizing a cylinder on flat configuration was developed. The analysis and test procedure developed during this study will ultimately aid in the selection and evaluation of a new coating capable of preventing fretting.  相似文献   

5.

Wear on the local area of steel wires’ surface is attributed to torsional fretting on the working process of stranded-wire helical spring. A mathematical model to calculate normal contact force and angular displacement amplitude among the wires is established first when the spring is impacted. With the experimental parameters obtained from the model, the torsional fretting test, which stimulates torsional fretting among the wires in the working process of the spring, is realized successfully on a newly developed fretting tester. Torsional fretting behaviors are strongly dependent upon normal contact force, angular displacement amplitude, and number of cycles. There are three basic types of T-θ curves (short for torque), angular displacement curves during the process of torsional fretting, namely, parallelogram, elliptic, and linear T-θ curves. To analyze the damage mechanisms, distribution maps of oxygen in the wear scar of spring wires under different working conditions are revealed. The damage gets slight in the partial slip region, mainly with the abrasive wear and the slight oxidative wear, whereas the wear mechanisms are mainly the abrasive wear, the oxidative wear, and the delamination, accompanied with obvious plastic deformation in the mixed fretting and slip regions.

  相似文献   

6.
Fretting wear and fatigue may occur between any two contacting surfaces, wherever short‐amplitude reciprocating sliding is present for a large number of cycles. A test device has been developed for the evaluation of fretting fatigue and wear in partial and gross slip conditions. Three similar sphere‐on‐plane contacts run at the same time. Normal force, tangential force or displacement amplitude and constant bulk stress can be controlled and measured separately. Reciprocating tangential displacement is produced with rotational motion, the amplitude and frequency of which can be adjusted and controlled accurately by an electric shaker. The number of load cycles for crack initiation and growth is determined with strain‐gauge measurements near the fretting point of contact. The contact surfaces are measured with 3D optical profilometer before fretting measurements to determine actual contact geometry. The measurements were done with quenched and tempered steel. The initial results indicate that cracks are mostly formed in partial slip conditions, whereas fretting wear is more heavily involved in gross slip conditions. The initiation of a crack occurs near the edge of the contact in the slip direction, where the calculated cracking risk has its maximum value in partial slip conditions. The number of cracks increases as the displacement amplitude, i.e. friction force, increases in partial slip conditions. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

7.
Tribochemical wear may occur at the interface between a surface and a lubricant as a result of chemical and mechanical interactions in a tribological contact. Understanding the onset of tribochemical wear damage on component surfaces requires the use of high resolution techniques such as transmission electron microscopy (TEM). In this study, two steel types, case carburized AISI 3310 and through-hardened AISI 52100, were wear tested using a ball-on-disk rolling/sliding contact tribometer in fully formulated commercial wind turbine gearbox oil under boundary lubrication conditions with 10% slip. With the exception of steel type, all other test conditions were held constant. Conventional tribofilm analysis in the wear tracks was performed using X-ray photoelectron spectroscopy, and no significant composition differences were detected in the tribofilms for the different steel disk types. However, TEM analysis revealed significant tribochemical wear differences between the two steel types at multiple length scales, from the near-surface material microstructure (depth < 500 nm) to the tribofilm nanostructure. Nanometer-scale interfacial cracking and surface particle detachment was observed for the AISI 52100 case, whereas the tribofilm/substrate interface was abrupt and undamaged for the AISI 3310 case. Differences in tribofilm structure, including the location and orientation of MoS2 single sheet inclusions, were observed as a function of steel type as well. It is suggested that the tribochemical wear modes observed in these experiments may be origins of macroscopic surface-initiated damage such as micropitting in bearings and gears.  相似文献   

8.
The present study is aimed at determining whether or not tribopolymerisation can occur under conditions of fretting contact. Using a high contact stress system consisting of oscillating metal balls loaded against flat steel discs, effects of various monomers on friction, wear, and surface film formation were determined. Monomers were used at 1% concentration in hexadecane. Under the conditions used (90N load, 40 Hz frequency, 300 μm amplitude, for 1 hour), the monomers tested reduced friction or wear or both. Fourier Transform Infrared (FTIR) analysis of the test specimens showed that organic material is presented in the wear scars and depends on the metal system used, the monomer structure, location within the track, and the method of cleaning the surface after a test. With Al-on-steel, the addition of 1% styrene to hexadecane reduced volumetric wear of the disc by 65%; furthermore, positive FTIR evidence of polystyrene in the wear track was obtained. But adimer acid/glycol monomer formed metal soaps, no polymer, and had little effect on wear under these conditions. These results support the hypotheses that addition-type tribopolymerisation can be initiated by exoelectron emission. Additionally, it was found that not only does methyl methacrylate polymerise under the fretting conditions, but the polymer film formed also reacts with the friction contact surface. Taken as a whole, the results of this study of possible tribopolymerisation under fretting conditions support both major hypotheses, namely that: (i) for condensation-type monomers, the most important factor is the temperature of the rubbing surfaces. (ii) For addition-type monomers, it would appear that the effect of exoelectron emission can initiate surface polymerisation even at relatively low surface temperatures, e.g., 10–40°C above ambient. This is in agreement with the negative-ion-radical action mechanism (NIRAM) of boundary lubricant component. Finally, the results obtained in this study demonstrate that the principle of tribopolymerisation developed by Furey and Kajdas can be used as a novel and effective approach to designing specific molecular structures for boundary lubrication under various rubbing conditions.  相似文献   

9.
Fretting damage to a glass surface in contact with a steel ball was investigated. In the initial stage of fretting, severe wear occurred on the steel ball and considerable wear debris was transferred to the glass surface. The coefficient of friction increased during this stage by 80%. Fatigue cracks were observed on the glass surface under conditions of high normal load and tangential force. The mechanism of fretting fatigue and fretting wear is discussed in relation to a brittle material. Finally the effect of thin metal foil inserts in reducing fretting damage is described.  相似文献   

10.
《Wear》1997,210(1-2):27-38
The wear and friction behaviour of silicon nitride against bearing steel was investigated under lubricated and dry fretting conditions as a function of amplitude and test duration. Tests were performed on a high frequency fretting tester. Silicon nitride bearing balls were used as the upper oscillating specimens while the lower stationary flats were standard specimens of bearing steel. Amplitudes in the intermediate 5 to 50 μm range and a test duration from 10 to 360 min were studied. In lubricated conditions a commercial lubricant. ISO VG 220, was used. Light microscopy, scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), Auger spectroscopy (AES) and transmission electron microscopy (TEM) were employed to determine the wear mechanisms.

Under lubricated conditions transition from high to low wear volumes was recognised with increasing amplitude. At lower amplitudes and in the early stage of fretting tests at moderate amplitudes, mechanical wear dominated. Cracks on the stick-slip boundary and spalling of a thin tribolayer was observed. Under these conditions the highest wear in lubricated fretting was obtained. In the final stage of fretting tests at moderate amplitudes, and from the beginning at higher amplitude, tribochemical wear is suggested as the dominant wear form. A 0.2 μm thick tribolayer was observed on the contact, containing inclusions with different Fe and Si contents. A very high concentration of carbon, formed by oil degradation, was also determined in this layer, confirming the critical influence of oil on the wear behaviour.

Quite a different wear mechanism is proposed for dry fretting conditions. Results of AES analysis showed a layer an order of magnitude thicker than in lubricated fretting, also having a remarkably different chemical composition. TEM analysis confirmed that the reaction layer consisted of a silica-rich amorphous phase containing small inclusions of Fe2O3 and Fe3O4. In contrast to lubricated conditions, where the layer created was ductile, in the case of dry fretting the layer was brittle. The continuous process of forming and spalling the brittle tribolayer caused much higher wear rates and wear losses than under lubricated fretting conditions. No transition in wear behaviour was observed as was the case in lubricated fretting.  相似文献   


11.
Fretting wear   总被引:3,自引:0,他引:3  
R.B. Waterhouse 《Wear》1984,100(1-3):107-118
This review covers developments in fretting wear over the past three years. The threshold amplitude of slip at which fretting damage becomes apparent is found to be in the region of 0.5 μm. Very low amplitudes of slip and low frequencies (0.001 Hz) are particularly damaging in electrical contacts, leading to high resistances resulting from oxide build-up. In high temperature fretting, oxide formation can give protection. In titanium alloys this can be improved by ion implantation, particularly with bismuth. In aqueous solutions, such as sea water, fretting stimulates the chemical dissolution of material, which accounts by far for the major part of the wear.  相似文献   

12.
A method for evaluating fretting damage in thin sheets was developed for AISI 301 stainless steel in full hard condition in contact with AISI 52100 steel and cast ANSI A356 aluminum. Samples were subjected to fretting and then were subsequently fatigue tested to determine the impact of the fretting damage on fatigue life. A finite element model of the experimental configuration was used to determine the response for the experimental conditions imposed. The values of Fatemi-Socie critical-plane fatigue damage parameter are shown to correspond to the trends in the observed residual fatigue life for contact with AISI 52100 steel.  相似文献   

13.
《Wear》1987,116(2):141-155
An investigation was conducted to determine the effect of oxygen and water vapour on the friction and wear behaviour of an Al-Zn-Mg alloy under fretting conditions. Fretting wear experiments were carried out in wet air, dry air and in dry argon. In this case the peak-to-peak relative slip amplitude was varied from 20 to 260 μm to determine the critical slip amplitude of fretting wear in these environments.The experimental results indicated that the wear rates in dry air and in dry argon under macroslip conditions were almost the same and quite lower than the wear rate in wet air. This revealed that the effect of oxygen on fretting wear was not large but that water vapour accelerated the fretting wear of the aluminium alloy. The cyclically softened material due to overaging was observed below the contact surface during fretting in wet air. The mechanism involved rapid fretting wear in wet air which caused the removal of a heavily work-hardened layer as it was formed but the softened material below it was not removed.  相似文献   

14.
An experimental study torsional fretting behaviors of LZ50 steel   总被引:1,自引:0,他引:1  
Four simple fretting modes are defined according to relative motion: tangential, radial, rotational, and torsional fretting. This paper presents a new test rig that was developed from a low-speed reciprocating rotary system to show torsional fretting wear under ball-on-flat contact. Torsional fretting behavior was investigated for LZ50 steel flats against AISI52100 steel balls under various angular displacement amplitudes and normal loads. The friction torques and dissipation energy were analyzed in detail. Two types of Tθ curves in the shape of quasi-parallelograms and ellipticals were found that correspond to gross and partial slips, respectively. The experimental results showed that the dynamic behavior and damage processes depend strongly on the normal loads, angular displacement amplitudes, and cycles. In this paper, the debris and oxidation behaviors and detachment of particles in partial and gross slip regimes are also discussed. Debris and oxidation are shown to have important roles during the torsional fretting processes. The wear mechanism of torsional fretting was a combination of abrasive and oxidative wear and delamination before third-body bed formation. The mechanism was then transformed into third-body wear after a great amount of debris formed.  相似文献   

15.
T. Kayaba  A. Iwabuchi 《Wear》1981,66(1):27-41
The influence of hardness on fretting wear was investigated experimentally in air using a bearing-steel ball sliding on a 0.6% C steel plate under a load of 34.3 N at a frequency of 16.6 Hz. The total number of cycles was 105 and peak-to-peak amplitudes of 45 and 260 μm were used. The hardness of both materials was varied from 220 to 850 HV.Hardness had only a minor influence on fretting wear. The significant factor was the action of any black oxide produced. The black oxide reduced the wear of the surface from which it was generated but acted as an abrasive against the opposing surface. At a sliding amplitude of 260 μm there were discontinuities on the wear curves due to the formation of black oxide. Similar wear characteristics were obtained with an amplitude of 45 μm except that some heavy damage due to adhesion and material transfer occurred.  相似文献   

16.
关于微动磨损与微动疲劳的研究   总被引:18,自引:2,他引:16  
周仲荣 《中国机械工程》2000,11(10):1146-1150
微动磨损与微动疲劳是2种主要的微动模式,造成的损伤在工业中相当普遍,并可能引发灾难性的后果。主要研究了们移幅度、压力和疲劳应力3个基本微动参数,并以获得的微动区域、微动图为基础,分析了微动磨损与微动疲劳的运行机制和破坏规律。为更好地了解微动磨损与微动疲劳之间的内在联系,进一步探讨了接触磨损与局部疲劳、局部疲劳与整体疲劳之间的竞争机制。  相似文献   

17.
The influence of oil lubrication on the fretting wear behaviors of 304 stainless steel flat specimens under different fretting strokes and normal loads has been investigated. The results proved that fretting regimes and fretting wear behaviors of 304 stainless steels were closely related to the fretting conditions. In general, the increase in normal load could increase wear damage during sliding wear. However, according to the results, a significant reduction in wear volume and increase in friction coefficient was observed when the normal load was increased to critical values of 40 and 50 N at a fretting stroke of 50 μm due to the transformation of the fretting regime from a gross slip regime to partial slip regime. Only when the fretting stroke further increased to a higher value of 70 μm at 50 N, fretting could enter the gross slip regime. There was low wear volume and a high friction coefficient when fretting was in the partial slip regime, because oil penetration was poor. The wear mechanisms were fatigue damage and plastic deformation. There was high wear volume and low friction coefficient when fretting was in the gross slip regime, because the oil could penetrate into the contact surfaces. Unlike the wear mechanisms in the partial slip regime, fretting damage of 304 stainless steels was mainly caused by abrasive wear in the gross slip regime.  相似文献   

18.
Z.A. Wang  Z.R. Zhou   《Wear》2009,267(9-10):1399-1404
The chemical and physical properties are quite different for mineral oil and synthetic oil. Compared to the investigation of mineral oil, less work on fretting behaviour of synthetic oils was reported. In this paper, a study of typical synthetic base oils such as polyalkylene glycol (PAG), polyalphaolefin (PAO) and silicone oil has been conducted. The contact consisted of a fixed flat specimen (GCr15 steel and 45 steel) opposite to a moving ball specimen (GCr15 steel) with a diameter of 12.3 mm. Other main parameters were as follows: the slip amplitude was ranged from 5 to 80 μm, the frequency was varied from 2 to 5 Hz; the normal load, temperature and relative humidity were respectively 100 N, 23 °C and 60%. Variations in the tangential force versus the displacement as a function of the fretting cycles were recorded. For comparison, fretting tests under dry condition have also been performed. The fretting scars were examined after tests. The evolution of coefficient of friction and wear volume were analyzed and compared at different fretting regimes for different synthetic base oils. The competitions between oil penetration into the interface and self-cleaning by fretting in different fretting regimes, the effect of physical properties such as surface tension, pressure–viscosity coefficient and compressibility on fretting behaviour have been particularly discussed.  相似文献   

19.
P.A. Higham  B. Bethune  F.H. Stott 《Wear》1978,46(2):335-350
The effects of experimental conditions on the amount of wear of the metal surface during fretting of steel on polycarbonate in laboratory air have been studied within the following limits: amplitude 2–20 μm, frequency 10–120 Hz and normal load 130–830 g. The influence of water vapour on the wear has also been investigated.The polycarbonate induces fretting damage of the steel, with α-Fe2O3 particles being transferred from the steel to the polymer surface. After an incubation period during which wear does not take place a running in period occurs during which the rate of wear decreases with the number of cycles, followed by a steady state period, during which the rate of wear remains fairly constant. The length of the incubation period generally increases with decreasing amplitude of slip and with increasing frequency of vibration, while the amount of subsequent wear generally increases with increasing amplitude of slip, with decreasing frequency of vibration and with decreasing applied load within the range studied. It is found that water vapour content has the most significant effect on the amount of wear. In moist oxygen, moist argon and moist nitrogen (relative humidity about 85%) the amount of wear is greater than in laboratory air (relative humidity about 50%), while in dry gases virtually no wear of the metal is observed.  相似文献   

20.
在自制的微动疲劳试验机上开展中性腐蚀环境下单根钢丝的微动疲劳实验,考察在相同接触载荷下,不同振幅对钢丝的微动疲劳行为的影响,并用扫描电子显微镜观察疲劳钢丝的磨痕和断口形貌,研究钢丝微动疲劳断裂机制.结果表明:在较大的振幅下,钢丝的微动区均处于滑移状态,而在较小振幅下,钢丝的微动区从滑移状态逐渐转变为黏着状态;磨损机制主要为磨粒磨损、疲劳磨损、腐蚀磨损和塑性变形;钢丝疲劳寿命随着微动振幅的增大而减小;钢丝的疲劳断口可分为3个区域,即疲劳源区、裂纹扩展区及瞬间断裂区.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号