首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 968 毫秒
1.
Oxidative stress is implicated in neuronal apoptosis that occurs in physiological settings and in neurodegenerative disorders. Superoxide anion radical, produced during mitochondrial respiration, is involved in the generation of several potentially damaging reactive oxygen species including peroxynitrite. To examine directly the role of superoxide and peroxynitrite in neuronal apoptosis, we generated neural cell lines and transgenic mice that overexpress human mitochondrial manganese superoxide dismutase (MnSOD). In cultured pheochromocytoma PC6 cells, overexpression of mitochondria-localized MnSOD prevented apoptosis induced by Fe2+, amyloid beta-peptide (Abeta), and nitric oxide-generating agents. Accumulations of peroxynitrite, nitrated proteins, and the membrane lipid peroxidation product 4-hydroxynonenal (HNE) after exposure to the apoptotic insults were markedly attenuated in cells expressing MnSOD. Glutathione peroxidase activity levels were increased in cells overexpressing MnSOD, suggesting a compensatory response to increased H2O2 levels. The peroxynitrite scavenger uric acid and the antioxidants propyl gallate and glutathione prevented apoptosis induced by each apoptotic insult, suggesting central roles for peroxynitrite and membrane lipid peroxidation in oxidative stress-induced apoptosis. Apoptotic insults decreased mitochondrial transmembrane potential and energy charge in control cells but not in cells overexpressing MnSOD, and cyclosporin A and caspase inhibitors protected cells against apoptosis, demonstrating roles for mitochondrial alterations and caspase activation in the apoptotic process. Membrane lipid peroxidation, protein nitration, and neuronal death after focal cerebral ischemia were significantly reduced in transgenic mice overexpressing human MnSOD. The data suggest that mitochondrial superoxide accumulation and consequent peroxynitrite production and mitochondrial dysfunction play pivotal roles in neuronal apoptosis induced by diverse insults in cell culture and in vivo.  相似文献   

2.
PURPOSE: To investigate the role of the gap junction protein connexin43 (Cx43), which is predominantly expressed in lens epithelial cells in the control of lens development and organization. METHODS: Newborn mice in which the Cx43 gene was disrupted by homologous recombination were used. Lenses from Cx43 (-/-) mice and wild-type littermates were processed by using 2% glutaraldehyde fixation for light and transmission electron microscopy and by freezing in liquid nitrogen for light and confocal microscopy of immunofluorescence in cryosections. RESULTS: In wild-type mice, Cx43 was immunolocalized to apical and lateral regions of lens epithelial cells and throughout the cornea, iris, ciliary body, and retina. In the bow, or equatorial, region of the lens, Cx43 disappeared gradually at the margins of the epithelial layer, whereas major intrinsic polypeptide, MP26, and alpha-crystallins were only detected in differentiated fiber cells. Ultrastructural studies revealed that epithelial cells and epithelial fiber cells were connected by large gap junctions. Lens fiber cells were closely apposed to apical boundaries of epithelial cells and apposed to one another along their entire lengths. In Cx43 (-/-) mice, epithelial cells were connected more loosely. The distribution of MP26 and alpha-crystallin in bow region fiber cells in Cx43 (-/-) lenses was not distinguishable from that in the lenses of wild-type mice. Cx46 and Cx50 were also expressed in superficial and cortical fiber cells, with similar distributions in Cx43 (-/-) and wild-type mice. However, organization of appositional membranes between lens fiber cells and between fiber and epithelial cells differed dramatically in the Cx43 (-/-) lens. In contrast to the close apposition of cells in lenses of normal mice, fiber cells in Cx43 (-/-) lenses were largely separated from apical surfaces of epithelial cells, and large vacuolar spaces were apparent between fiber cells, most prominently in deeper cortical regions. CONCLUSIONS: The normal differentiation of lens fiber cells in the bow region in lenses of Cx43 (-/-) mice, evidenced by similar distributions of Cx46, Cx50, MP26, and alpha-crystallin, suggests that the expression of Cx43 is not required for this process. However, these lenses exhibit grossly dilated extracellular spaces and intracellular vacuoles, indicative of early stages of cataract formation. These changes suggest that osmotic balance within the lens is markedly altered in Cx43 (-/-) animals, highlighting the importance of intercellular communication mediated by lens epithelial Cx43 gap junctions in the function of this tissue.  相似文献   

3.
Epithelial cells in primary ovine lens cultures express the gap junction proteins connexin43 (Cx43) and connexin49 (Cx49; a.k.a. MP70), a homologue of mouse connexin50. In contrast, lens cultures of differentiated, fiber-like cells (termed lentoid cells) express Cx49 and connexin46 (Cx46), but not Cx43. To investigate the regulation of lens cell gap junctions by protein kinase C (PKC), differentiating lens cultures were treated with the PKC activator 12-O-tetradecanoylphorbol-13-acetate (beta-TPA). Within 10 min, beta-TPA significantly inhibited the transfer of Lucifer Yellow dye between epithelial, but not lentoid, cells. This inhibition was correlated with the phosphorylation of Cx43 and was followed by the gradual disappearance of Cx43 from cell interfaces. The protein kinase inhibitor staurosporine prevented Cx43 phosphorylation and the loss of Cx43 from intercellular junctions. Following treatment of cultures with beta-TPA for 2-6 hr, Cx49 disappeared from epithelial cell interfaces, and by 24 hr of beta-TPA treatment, levels of Cx49 detected on immunoblots of purified epithelial membrane fractions had also diminished significantly. The beta-TPA-induced loss of Cx49 both from regions of epithelial cell contact and from isolated membranes was correlated with the disappearance of Cx49 mRNA. In contrast to the epithelial connexins, the lentoid connexins Cx49 and Cx46 were unaffected by even extended beta-TPA treatment. In spite of lentoid dye transfer being refractory to beta-TPA, significant levels of PKC-alpha (a beta-TPA-sensitive isoform) were detected in the lentoid cell. The response of lens gap junctions to beta-TPA depends upon the stage of differentiation and the complement of connexins expressed. The contrasting effects of beta-TPA on Cx43 and Cx49 in lens epithelial cells indicate a fundamental difference in the regulation of these connexin proteins in the developing mammalian lens.  相似文献   

4.
Apoptotic cell death occurs during normal lymphocyte development and differentiation as well as following lymphocyte exposure to endogenous corticosteroids released during stress, malnutrition, and trauma. Recognition and engulfment of these apoptotic cells is important for the clearance of dying cells before they release potent inflammatory mediators into the vasculature or tissues. Phagocytosis of apoptotic cells is accomplished in part by macrophages. We report for the first time that apoptotic lymphocytes are also phagocytosed by high endothelial venule (HEV) cells. The murine HEV cell line mHEVa rapidly phagocytosed apoptotic lymphoid and myeloid cells with the greatest rate of phagocytosis occurring at 0-6 h. To confirm HEV cell interaction with apoptotic cells, we demonstrated that apoptotic human tonsil lymphocytes were phagocytosed by human tonsil HEV cells in primary cultures. Furthermore, we examined HEV cell phagocytosis in vivo. Mice were treated with a natural corticosterone (4-pregnene-11 beta,21-diol-3,20-dione) at levels detected during stress or malnutrition (93-180 micrograms serum cortisol/dl). At 4-12 h posttreatment, apoptotic lymphocytes were present inside vacuoles of HEV cells in axillary lymph node tissue sections, as determined by transmission electron microscopy. These data suggest that, in addition to macrophages, lymph node HEV cells also play a role in the removal of apoptotic lymphocytes. Moreover, since HEV cells are specialized endothelial cells that regulate lymphocyte migration into peripheral lymphoid tissues, they may provide an important checkpoint for clearance of apoptotic lymphocytes within the vasculature, as well as limiting entrance of nonfunctional lymphocytes into the lymph node.  相似文献   

5.
The distribution of alpha A- and alpha B-crystallin in the developing lens of human (Carnegie stages 13 to 23) and rat embryos (embryonic days E11 to 18) was examined immunohistochemically. In a human embryo at stage 13, the lens placode was already immunoreactive to alpha B-crystallin, but not to alpha A-crystallin. At stage 15, the lens vesicle was intensely immunoreactive both to alpha A- and alpha B-crystallin. From stages 16 to 23, the lens epithelial cells and fiber cells were immunoreactive to alpha A- and alpha B-crystallin. In rat embryos, alpha A-crystallin appeared in the lens pit at E12, and alpha B-crystallin appeared in the elongating lens fiber cells at E14. From E15 to E18, the lens epithelial cells and fiber cells were immunoreactive to alpha A-crystallin. The lens fiber cells were also immunoreactive to alpha B-crystallin, but the epithelial cells were not. These findings suggest that alpha B-crystallin appears earlier than alpha A-crystallin in the human lens, but at a later period than alpha A-crystallin in the rat lens. alpha B-Crystallin was not detected in the epithelial cells of the rat lens, but was persistently present in the epithelial cells of the human lens.  相似文献   

6.
Dye transfer between lens fiber cells and between lens epithelial cells and underlying fiber cells was studied using a wide dynamic range-cooled CCD camera, H2O immersion objectives and image analysis techniques. Each lens was decapsulated by a new technique which leaves the epithelial cells adherent to the lens fiber mass. Lucifer Yellow CH was injected into either single epithelial cells or single fiber cells using the standard whole cell configuration of the patch voltage clamp technique. The results demonstrate extensive dye communication between fiber cells at the lens posterior surface, anterior surface, and equatorial surface. Dye transfer between deep fiber cells was also observed. Dye transfer between approximately 10% of epithelial cells and their underlying fiber cells was apparent when care was taken to yield wide dynamic range images. This was required because the relatively high concentration of dye in the epithelial cell masks the presence of much lower dye concentrations in the underlying fiber cell. A mathematical model which includes dye concentration, time, and spatial spread suggests that those epithelial cells that are coupled to an underlying fiber cell are about as well dye coupled as the epithelial cells themselves. The relatively low dye concentration in a fiber cell is due to its larger volume and diffusion of the dye along the axis of the fiber away from the fiber/epithelial junction.  相似文献   

7.
8.
Fas is expressed constitutively in colonic epithelial cells and is also expressed in colon carcinomas and in cultured colon carcinoma cell lines. However, the potential role of Fas signaling in mediating apoptosis in cells of this type remains unknown. We have developed human colon carcinoma cell models deficient in thymidylate synthase that demonstrate acute (TS- cells) or delayed (Thy4 cells) apoptosis following DNA damage induced by thymineless stress. Complete protection of cells from acute apoptosis and prolongation of delayed apoptosis was obtained following exposure to the NOK-1 monoclonal antibody (inhibitory to Fas signaling) during the period of dThd deprivation. These results suggested that apoptosis induced by thymineless stress was regulated by autocrine signaling via Fas-FasL interactions. Fas expression was high in both TS- and Thy4 cells. However, FasL, undetectable in synchronous cultures, was up-regulated in TS- cells at 48 hr, when cells were undergoing acute apoptosis, and in Thy4 cells at 96 hr, correlating with the delayed onset of thymineless death. FasL expression also correlated with acute apoptosis induced in parental GC3/cl cells, commencing at 48 hr, following thymidylate synthase inhibition by 5-fluorouracil/leucovorin exposure. Fas-mediated apoptosis induced by the cytotoxic anti-Fas monoclonal antibody CH-11 was inhibited following adenoviral delivery of a Bcl-2 cDNA, and Bcl-2 also protected cells from acute apoptosis induced by dThd deprivation. Taken together, these data demonstrate a functional Fas system in these cultured colon carcinoma cell models, and they demonstrate that Fas-FasL interactions can link DNA damage induced by thymineless stress to the apoptotic machinery of colon carcinoma cells.  相似文献   

9.
Previous studies showed that lens epithelial cells proliferate rapidly in the embryo and that a lens mitogen, most likely derived from the blood, is present in the anterior chamber of the embryonic eye (Hyatt, G. A., and Beebe, D. C., Development 117, 701-709, 1993). Messenger RNAs for several growth factor receptors have been identified in embryonic lens epithelial cells. We tested several growth factors that are ligands for these receptors for their ability to maintain lens cell proliferation. Embryo serum, PDGF, GM-CSF, and G-CSF maintained lens cell proliferation, but NGF, VEGF, and HGF did not. This and a previous study (Potts, J. D., Harocopos, G. J., and Beebe, D. C., Curr. Eye Res. 12, 759-763, 1993) detected members of the Janus kinase family (Jaks) in the developing lens. Because Jaks are central players in the Jak-STAT-signaling pathway, we identified STAT proteins in the lens and tested whether they were phosphorylated in response to mitogens. STAT1 and STAT3, but not STAT 5 were detected in chicken embryo lens epithelial cells. Only STAT3 was found in terminally differentiated lens fiber cells. STAT1 and STAT3 were phosphorylated in lens cells analyzed immediately after removal from the embryo and when lens epithelial explants were treated with embryo serum, PDGF, or GM-CSF, but not with NGF. Chicken embryo vitreous humor or IGF-1, factors that stimulate lens cell differentiation, but not proliferation, did not cause STAT phosphorylation. When lens epithelial cells were cultured for 4 h in unsupplemented medium, STAT1 and STAT3 declined to nearly undetectable levels. Treatment with PDGF or embryo serum for an additional 15 min restored STAT1 and -3 levels. This recovery was blocked by cycloheximide, but not actinomycin D, suggesting that STAT levels are regulated at the level of translation. STAT levels were maintained in epithelial explants by lens mitogens, but not by factors that stimulated lens fiber differentiation. Both factors that stimulated lens cell proliferation and those that caused fiber differentiation protected cultured lens epithelial cells from apoptosis. These data suggest that the factor(s) responsible for lens cell proliferation in vivo activates the Jak-STAT-signaling pathway. They also indicate that growth factors maintain STAT protein levels in lens epithelial cells by promoting the translation of STAT mRNA, an aspect of STAT regulation that has not been described previously. Signaling by most of the growth factors and cytokines known to activate the Jak-STAT pathway has been disrupted in mice by mutation or targeted deletion. Consideration of the phenotypes of these mice suggests that the factor responsible for lens cell proliferation in vivo may be a growth factor or cytokine that has not yet been described.  相似文献   

10.
11.
To investigate the apoptosis-inducing effect of glucocorticoid on gastric epithelial cell expressing different p53 genes, a human gastric epithelial cell line-GES-1 was transfected with either wild type or mutant p53 cDNA in vitro. The cells were treated with hydrocortisone in a concentration range of 0.2-0.8 g/L. Apoptotic cells were found in those transfectants. The apoptotic response of the wild-type p53-transfected GES-1 cells was much more marked than that of the mutant p53 transfected ones. It can be inferred that the glucocorticoid secreted not only suppress the immunological response during inflammation, but induce gastric epithelial cell apoptosis as well. If the gastric epithelial cell contains mutant p53 genes, the glucocorticoid confer a selective growth advantage which advance the malignant process.  相似文献   

12.
Mutations, expected to affect the intracellular routing, i.e. additional nuclear localization sequences (NLS; the natural 23 kDa isoform and a 17D27R mutant) and/or a deletion of amino acids 26-29 (23 delta 26-29 and 17 delta 26-29), were introduced in basic fibroblast growth factor (bFGF). The mutants were assayed for their mitotic activity and their capacity to induce a tissue-specific response in human umbilical vein endothelial cells [HUVECs; induction of urokinase plasminogen activator receptor (u-PAR)], or in rat lens epithelial cells (fibre cell differentiation). In HUVECs, the 17D27R mutant had wild type activity, the 23 kDa and the delta 26-29 proteins were impaired in the induction of both mitosis and u-PAR. The delta 26-29 proteins, but not the 23 kDa protein or 17D27R mutant, were also impaired in receptor binding in that they bound only to a subset of receptors. The concentration of 17 kDa bFGF required for half maximal u-PAR response was 30 fold higher than for the half maximal 3H-thymidine incorporation. Addition of an NLS to bFGF strongly inhibited the induction of fibre cell differentiation, though it had little effect on the stimulation of DNA synthesis. The 17 delta 26-29 kDa mutant had wild type differentiation activity but was a poor mitogen for lens epithelial cells.  相似文献   

13.
The cytotoxicity of transforming growth factor beta 1 (TGF beta 1) was assessed in rat hepatocytes cultured under periportal (PP)-or pericentral (PC)-equivalent conditions. TGF beta 1 induced a 5-fold greater DNA fragmentation and LDH release in PC cultures than in PP cultures. At low exposure level (1 ng/ml TGF beta 1), albumin secretion and mitochondrial activity (rhodamine-123 uptake) were selectively reduced in PP cultures, whereas the incidence of apoptotic cells in PC cultures was about 10-fold higher than that in PP cultures. The time profiles of TGF beta 1-induced apoptotic and necrotic events and the concentration-response relationship differed in PC and PP cultures. In PC cultures the early appearance of cells with apoptotic nuclei was not associated with DNA fragmentation nor with an increase in LDH release or impaired mitochondrial function. At a high exposure level (5 ng/ml TGF beta 1), again cells with apoptotic nuclei were much more strongly induced in PC cultures but DNA fragmentation, LDH release, and impairment of mitochondrial activity all increased in an exposure-time dependent manner in both PP and PC cultures. At this exposure level 48 and 72% of the apoptotic cells detected in PC cultures after continuous exposure for 24 hr were induced within an exposure of 1 and 4 hr, respectively. Aurintricarboxylic acid (50 microM), an inhibitor of endonucleases, significantly inhibited the appearance of apoptotic cells and the progression in apoptosis. Clearly, TGF beta 1 preferentially induced apoptotic cell death in hepatocytes with PC-equivalent metabolism at low exposure levels. High exposure levels or prolonged exposure periods produced both apoptosis and necrosis.  相似文献   

14.
15.
PURPOSE: To investigate the biochemical mechanisms involved in the cataract induced by lovastatin, a commonly used cholesterol-lowering agent. METHODS: The effects of lovastatin on lens transparency and on lens epithelial cell proliferation and structure have been investigated using organ-cultured rat lenses and cultured epithelial cells from human and rabbit lenses, respectively. Lens histologic and morphologic changes were recorded microscopically. Small GTP-binding protein profiles were determined by [alpha-32P] GTP overlay assays. RESULTS: Rat lenses organ cultured for 7 days with lovastatin, a 3-hydroxy-3-methylglutaryl CoA reductase inhibitor, developed frank subcapsular opacity. Lens epithelial cells (both human and rabbit) demonstrated extensive morphologic changes and inhibition of proliferation when treated with lovastatin. Histologic sections of lovastatin-treated lenses showed partial to complete degeneration of the central epithelium, distortion of elongating epithelial cells, and extensive vacuole formation in the equatorial regions of the cortex. Supplementation of the medium with DL-mevalonic acid (a precursor of isoprenoids whose synthesis is inhibited by lovastatin) prevented the lovastatin-induced changes in whole lenses or in lens epithelial cell cultures, whereas supplementation with cholesterol had no such effect. GTP-binding proteins accumulated in the soluble fractions of lovastatin-treated lens epithelial cells. This was consistent with a blockade in isoprenylation preventing normal association with membranes. CONCLUSIONS: The findings suggest that impairment of the function of small GTP-binding proteins, due to a lovastatin-induced blockade in their isoprenylation, affects lens cell structure and proliferation in tissue culture and induces lens opacity in organ culture. These findings are consistent with the proposed roles of small GTP-binding proteins as molecular switches that regulate fundamental cellular processes, including growth, differentiation, and maintenance of cell structure.  相似文献   

16.
The lens plays an essential role for proper eye development. Mouse mutants affecting lens development are excellent models for corresponding human disorders. Moreover, using mutations in particular genes the process of eye and lens development can be dissected into distinct steps. Therefore, three mouse mutants will be described in detail and discussed affecting three essential stages: formation of the lens vesicle, initiation of secondary lens fiber cell formation, and terminal differentiation of the secondary fiber cells. The mutant aphakia (ak) has been characterized by bilaterally apakic eyes [Varnum and Stevens (1968) J. Hered. 59, 147-150], and the corresponding gene was mapped to chromosome 19 [Varnum and Stevens (1975) Mouse News Letters 53, 35]. Recent investigations in our laboratory refined the linkage 0.6 +/- 0.3 N cm proximal to the microsatellite marker D19Mit10. The linked gene Pax2, responsible for proper development of the posterior part of the eye and the optic nerve, was excluded as candidate gene by sequence analysis. Histological analysis of the homozygous ak mutants revealed a persisting lens stalk and subsequently the formation of lens rudiments. The lens defects led to irregular iris development and retinal folding. Congenital aphakia is known as a rare human anomaly. Besides a corneal dystrophy (CDTB), no corresponding disease is localized at the homologous region of human chromosome 10q23. The Cat3 mutations are characterized by vacuolated lenses caused by alterations in the beginning of secondary lens fiber cell differentiation at embryonic day 12.5. Secondary malformations develop at the cornea and the iris, but the retina remains unaffected. Two mutant alleles of the Cat3 locus have been mapped to mouse chromosome 10 very close to the microsatellite markers D10Mit41 and D10Mit95 (less than 0.3 cM). Since Cat3 is mapped to a position, which is homologous to human chromosome 12q21-24, the disorder cornea plana congenita can be considered as a candidate disease. The series of Cat2 mutations have been mapped close to the locus encoding the gamma-crystallin gene cluster Cryg [L?ster et al. (1994) Genomics 23, 240-242]. The Cat2nop mutation is characterized by a deletion of 11 bp and an insertion of 4 bp in the 3rd exon of Crygh leading to a truncated gamma B-crystallin. The defect in the Crygh gene is causative for the stop of lens fiber cell differentiation from embryonic day 15.5 onward. Besides the lens, no further ocular tissue is affected. The Cat2 mouse mutants are interesting models for human cataracts caused by mutations in the gamma-crystallin genes at human chromosome 2q32-35. The ak, Cat3 and Cat2 mutants are discussed in the context of other mutants affecting early eye and lens development. Additionally, human congenital cataracts are discussed, which have been characterized similar to the mouse models. The overview of the three types of mutants demonstrates that genes, which affect the early eye development, e.g. at the lens vesicle stage, have consequences for the development of the whole eye. In contrast, if the mutation influences later steps of lens differentiation, the consequences are restricted to the lens only. These data indicate a decreasing effect of the lens for the regulation of eye development during embryogenesis.  相似文献   

17.
Ultraviolet A (UVA, 315-400 nm) radiation is known to be a complete carcinogen, but in contrast to UVB (280-315 nm) radiation, much of the cell damage is oxygen dependent (mediated through reactive oxygen species), and the dominant premutational DNA lesion(s) remains to be identified. To investigate further the basic differences in UVA and UVB carcinogenesis, we compared in vivo cellular responses, viz. cell cycle progression and transient p53 expression in the epidermis, after UVA1 (340-400 nm) exposure with those after broadband UVB exposure of hairless mice. Using flow cytometry we found a temporary suppression of bromodeoxyuridine (BrdU) uptake in S-phase cells both after UVB and UVA1 irradiation, which only in the case of UVB is followed by an increase to well over control levels. With equally erythemogenic doses (1-2 MED), the modulation of BrdU uptake was more profound after UVB than after UVA1 irradiation. Also, a marked transient increase in the percentage of S-phase cells occurred both after UVB and after UVA1 irradiation, but this increase evolved more rapidly after UVA1 irradiation. Further, p53 expression increased both after UVB and UVA1 irradiations, with peak expression already occurring from 12 to 24 h after UVA1 exposure and around 24 h after UVB exposure. Overall, UVA1 radiation appears to have less of an impact on the cell cycle than UVB radiation, as measured by the magnitude and duration of changes in DNA synthesis and cells in S phase. These differences are likely to reflect basic differences between UVB and UVA1 in genotoxicity and carcinogenic action.  相似文献   

18.
The vertebrate lens provides an in vivo model to study the molecular mechanisms by which growth factors influence development decisions. In this study, we have investigated the expression patterns of platelet-derived growth factor (PDGF) and PDGF receptors during murine eye development by in situ hybridization. Postnatally, PDGF-A is highly expressed in the iris and ciliary body, the ocular tissues closest to the germinative zone of the lens, a region where most proliferation of lens epithelial cells occurs. PDGF-A is also present in the corneal endothelium anterior to the lens epithelium in embryonic and early postnatal eyes. PDGF-B is expressed in the iris and ciliary body as well as in the vascular cells which surround the lens during early eye development. In the lens, expression of PDGF-alpha receptor (PDGF-alphaR), a receptor that can bind both PDGF-A and PDGF-B, is restricted to the lens epithelium throughout life. The expression of PDGF-alphaR in the lens epithelial cells and PDGF (A- and B-chains) in the ocular tissues adjacent to the lens suggests that PDGF signaling may play a key role in regulating lens development. To further examine how PDGF affects lens development in vivo, we generated transgenic mice that express human PDGF-A in the lens under the control of the alphaA-crystallin promoter. The transgenic mice exhibit lenticular defects that result in cataracts. The percentage of surface epithelial cells in S-phase is increased in transgenic lenses compared to their nontransgenic littermates. Higher than normal levels of cyclin A and cyclin D2 expression were also detected in transgenic lens epithelium. These results together suggest that PDGF-A can induce a proliferative response in lens epithelial cells. The lens epithelial cells in the transgenic mice also exhibit characteristics of differentiating fiber cells. For example, the transgenic lens epithelial cells are slightly elongated, contain larger and less condensed nuclei, and express fiber-cell-specific beta-crystallins. Our results suggest that PDGF-A normally acts as a proliferative factor for the lens epithelial cells in vivo. Elevated levels of PDGF-A enhance proliferation, but also appear to induce some aspects of the fiber cell differentiation pathway.  相似文献   

19.
The growth promoting effect of epidermal growth factor (EGF) was studied in cultures of epithelial cells from human normal and cataractous lenses. The growth potential of lens epithelial cells was measured by MTT assay. The concentration of EGF in culture medium were classified into 7 groups (0 ng/ml-10(3) ng/ml). When the concentration of EGF was 1 ng/ml, EGF induced the highest increase of growth potential epithelial cells compared with an EGF-free group.  相似文献   

20.
To determine the role of the insulin receptor overexpression in breast epithelial cell transformation, the 184B5 human breast epithelial cell line was transfected with human insulin receptor cDNA. In two cell lines transfected with and overexpressing human insulin receptors (IR) (223.8 and 184.5 ng IR/10(6) cells), but not in untransfected cells, insulin binding and tyrosine kinase activity were elevated, and insulin induced a dose-dependent increase in colony formation in soft agar.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号