首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The potent carcinogen, N-nitrosodimethylamine (NDMA), is produced during disinfection of municipal wastewater effluent from the reaction of monochloramine and organic nitrogen-containing precursors. To delineate the sources and fate of NDMA precursors during municipal wastewater treatment, NDMA formation was measured after extended chloramination of both model precursors and samples from conventional and advanced wastewater treatment plants. Of the model precursors, only dimethylamine, tertiary amines with dimethylamine functional groups, and dimethylamides formed significant NDMA concentrations upon chloramination. In samples from municipal wastewater treatment plants, dissolved NDMA precursors always were present in primary and secondary effluents. Biological treatment effectively removed the known NDMA precursor dimethylamine, lowering its concentration to levels that could not produce significant quantities of NDMA upon chlorine disinfection. However, biological treatment was less effective at removing other dissolved NDMA precursors, even after extended biological treatment. Significant concentrations of particle-associated NDMA precursors only were detected in secondary effluent at treatment plants that recycled water from sludge thickening operations in which dimethylamine-based synthetic polymers were used. Effective strategies for the prevention of NDMA formation during wastewater chlorination include ammonia removal by nitrification to preclude chloramine formation during chlorine disinfection, elimination of dimethylamine-based polymers, and use of filtration and reverse osmosis to remove particle-associated precursors and dissolved precursors, respectively.  相似文献   

2.
The topical antiseptic agent triclocarban (TCC) is a common additive in many antimicrobial household consumables, including soaps and other personal care products. Long-term usage of the mass-produced compound and a lack of understanding of its fate during sewage treatment motivated the present mass balance analysis conducted at a typical U.S. activated sludge wastewater treatment plant featuring a design capacity of 680 million liters per day. Using automated samplers and grab sampling, the mass of TCC contained in influent, effluent, and digested sludge was monitored by isotope dilution liquid chromatography (tandem) mass spectrometry. The average mass of TCC (mean +/- standard deviation) entering and exiting the plant in influent (6.1 +/- 2.0 microg/L) and effluent (0.17 +/- 0.03 microg/ L) was 3737 +/- 694 and 127 +/- 6 g/d, respectively, indicating an aqueous-phase removal efficiency of 97 +/- 1%. Tertiary treatment by chlorination and sand filtration provided no detectable benefit to the overall removal. Due to strong sorption of TCC to wastewater particulate matter (78 +/- 11% sorbed), the majority of the TCC mass was sequestered into sludge in the primary and secondary clarifiers of the plant. Anaerobic digestion for 19 days did not promote TCC transformation, resulting in an accumulation of the antiseptic compound in dewatered, digested municipal sludge to levels of 51 +/- 15 mg/kg dry weight (2815 +/- 917 g/d). In addition to the biocide mass passing through the plant contained in the effluent (3 +/- 1%), 76 +/- 30% of the TCC input entering the plant underwent no net transformation and instead partitioned into and accumulated in municipal sludge. Based on the rate of beneficial reuse of sludge produced by this facility (95%), which exceeds the national average (63%), study results suggest that approximately three-quarters of the mass of TCC disposed of by consumers in the sewershed of the plant ultimately is released into the environment by application of municipal sludge (biosolids) on land used in part for agriculture.  相似文献   

3.
Enantiomeric profiling of chiral drugs in wastewater and receiving waters   总被引:1,自引:0,他引:1  
The aim of this paper is to discuss the enantiomer-specific fate of chiral drugs during wastewater treatment and in receiving waters. Several chiral drugs were studied: amphetamine-like drugs of abuse (amphetamine, methamphetamine, MDMA, MDA), ephedrines (ephedrine and pseudoephedrine), antidepressant venlafaxine, and beta-blocker atenolol. A monitoring program was undertaken in 7 WWTPs (utilizing mainly activated sludge and trickling filters technologies) and at 6 sampling points in receiving waters over the period of 9 months. The results revealed the enantiomer-specific fate of all studied drugs during both wastewater treatment and in the aqueous environment. The extent of stereoselectivity depended on several parameters including: type of chiral drug (high stereoselectivity was recorded for atenolol and MDMA), treatment technology used (activated sludge showed higher stereoselectivity than trickling filters), and season (higher stereoselectivity was observed in the aqueous environment over the spring/summer time).  相似文献   

4.
Fluorochemicals are persistent contaminants that are globally distributed in air, water, sediments, and biota. Wastewater treatment plants (WWTPs) play an important role in mitigating pollutant releases from municipalities to aquatic and terrestrial environments. However, because WWTPs are point sources of fluorochemicals, it is important to understand their contribution to fluorochemical burdens in the greater context of watersheds. To this end, over a 1 week period, the mass flows of 11 fluorochemicals from seven WWTPs that discharge effluent into the Glatt River in Switzerland were measured and compared to the measured mass flows within the Glatt River. Overall, the fluorochemicals were not removed efficiently during wastewater treatment. Effluents from WWTPs and Glatt River water were dominated by perfluorooctane sulfonate, which was detected in all samples, followed by perfluorohexane sulfonate and perfluorooctanoate. The mass flows of fluorochemicals emanating from WWTPs were found to be conserved within the 35 km Glatt River, which indicates that input from the WWTPs is additive and that removal within the Glatt River is not significant. Per capita discharges of fluorochemicals were calculated from the populations served by the WWTPs studied; the values determined also account for the fluorochemical content of Lake Greifen (Greifensee), which is a lake at the headwaters of the Glatt River that also receives treated wastewater.  相似文献   

5.
We investigated the behavior of metallic silver nanoparticles (Ag-NP) in a pilot wastewater treatment plant (WWTP) fed with municipal wastewater. The treatment plant consisted of a nonaerated and an aerated tank and a secondary clarifier. The average hydraulic retention time including the secondary clarifier was 1 day and the sludge age was 14 days. Ag-NP were spiked into the nonaerated tank and samples were collected from the aerated tank and from the effluent. Ag concentrations determined by inductively coupled plasma-mass spectrometry (ICP-MS) were in good agreement with predictions based on mass balance considerations. Transmission electron microscopy (TEM) analyses confirmed that nanoscale Ag particles were sorbed to wastewater biosolids, both in the sludge and in the effluent. Freely dispersed nanoscale Ag particles were only observed in the effluent during the initial pulse spike. X-ray absorption spectroscopy (XAS) measurements indicated that most Ag in the sludge and in the effluent was present as Ag(2)S. Results from batch experiments suggested that Ag-NP transformation to Ag(2)S occured in the nonaerated tank within less than 2 h. Physical and chemical transformations of Ag-NP in WWTPs control the fate, the transport and also the toxicity and the bioavailability of Ag-NP and therefore must be considered in future risk assessments.  相似文献   

6.
The estrogen receptor agonist fate of hexane extracts from various locations and phases (liquid and solid) within one pilot-scale and two full-scale wastewater treatment facilities were examined by use of the receptor-binding yeast estrogen screen (YES assay). Estrogenic activity was found in samples that contained a high concentration of biological solids and was particularly high in the suspended solid fraction from biosolids treatment facilities. Mass balances revealed that the estrogenic activity associated with the processed biosolids constituted between 5 and 10% of the influent estrogenic activity, while the treated liquid effluent prior to disinfection contained between 26 and 43%. Overall, this suggests that between 51 and 67% of the estrogenic activity contained in the influent wastewater was either biodegraded during the wastewater or biosolids treatment processes or was unavailable to the extraction/detection procedure. In both aerobic and anaerobic digestion, mass balances revealed an increase in estrogenic activity as treatment progressed and biosolids destruction occurred. The estrogenic activity associated with the solid phase decreased during mesophilic aerobic digestion. A correlation was observed between the estrogenicity of mixed liquor suspended solids and aerobic sludge age and suggests that wastewater treatment facilities can be designed and operated to enhance the sorption and removal of estrogenic compounds from the liquid phase.  相似文献   

7.
The concentrations and removals of 16 fragrance materials (EMs) were measured in 17 U.S. and European wastewater treatment plants between 1997 and 2000 and were compared to predicted values. The average FM profile and concentrations in U.S. and European influent were similar. The average FM profile in primary effluent was similar to the average influent profile; however, the concentration of FMs was reduced by 14.6-50.6% in primary effluent. The average FM profile in final effluent was significantly different from the primary effluent profile and was a function of the design of the wastewater treatment plant. In general, the removal of sorptive, nonbiodegradable FMs was correlated with the removal of total suspended solids in the plant, while the removal of nonsorptive, biodegradable FMs was correlated with 5-day Biological Oxidation Demand removal in the plant. The overall plant removal (primary + secondary treatment) of FMs ranged from 87.8 to 99.9% for activated sludge plants, 58.6-99.8% for carousel plants, 88.9-99.9% for oxidation ditch plants, 71.3-98.6% for trickling filter plants, 80.8-99.9% for a rotating biological contactor plant, and 96.7-99.9% for lagoons. The average concentration of FMs in final effluent ranged from the limit of quantitation (1-3 ng/L) to 8 microg/L. Measured FM removal and concentrations were compared to predicted values, which were based on industry volume, per capita water use, octanol-water partition coefficient, and biodegradability.  相似文献   

8.
9.
To reduce the release of pharmaceuticals and endocrine disruptors into the aquatic environment or to remove them from wastewater intended for direct or indirect reuse, the application of advanced wastewater treatment may be required. In the present study, municipal wastewater effluents were treated with ozone (O3) in a pilot-scale plant consisting of two bubble columns. The investigated effluents, which varied in suspended solids concentrations, comprised an effluent of conventional activated sludge treatment (CAS), the same effluent dosed with 15 mg of TSS L(-1) of activated sludge (CAS + SS), and the effluent of a membrane bioreactor pilot plant (MBR). Selected classes of pharmaceuticals were spiked in the wastewater at realistic levels ranging from 0.5 to 5 microg L(-1). Samples taken at the inlet and the outlet of the pilot plant were analyzed with liquid chromatography (LC)-electrospray tandem mass spectrometry (MS). Macrolide and sulfonamide antibiotics, estrogens, and the acidic pharmaceuticals diclofenac, naproxen, and indomethacin were oxidized by more than 90-99% for O3 doses > or = 2 mg L(-1) in all effluents. X-ray contrast media and a few acidic pharmaceuticals were only partly oxidized, but no significant differences were observed among the three effluents. These results show that many pharmaceuticals present in wastewater can be efficiently oxidized with O3 and that suspended solids have only a minor influence on the oxidation efficiency of nonsorbing micropollutants.  相似文献   

10.
The behavior of fluoroquinolone antibacterial agents (FQs) during mechanical-biological wastewater treatment was studied by mass flow analysis. In addition, the fate of FQs in agricultural soils after sludge application was investigated. Concentrations of FQs in filtered wastewater (raw sewage, primary, secondary, and tertiary effluents) were determined using solid-phase extraction with mixed phase cation exchange disk cartridges and reversed-phase liquid chromatography with fluorescence detection. FQs in suspended solids, sewage sludge (raw, excess, and anaerobically digested sludge), and sludge-treated soils were determined as described for the aqueous samples but preceded by accelerated solvent extraction. Wastewater treatment resulted in a reduction of the FQ mass flow of 88-92%, mainly due to sorption on sewage sludge. A sludge-wastewater partition coefficient (log Kd approximately 4) was calculated in the activated sludge reactors with a hydraulic residence time of about 8 h. No significant removal of FQs occurred under methanogenic conditions of the sludge digesters. These results suggest sewage sludge as the main reservoir of FQ residues and outline the importance of sludge management strategies to determine whether most of the human-excreted FQs enter the environment. Field experiments of sludge-application to agricultural land confirmed the long-term persistence of trace amounts of FQs in sludge-treated soils and indicated a limited mobility of FQs into the subsoil.  相似文献   

11.
While membrane bioreactors (MBR) have proven their large potential to remove bulk organic matter from municipal as well as industrial wastewater, their suitability to remove poorly degradable polar wastewater contaminants is yet unknown. However, this is an important aspect for the achievable effluent quality and in terms of wastewater reuse. We have analyzed two classes of polar sulfur-organic compounds, naphthalene sulfonates and benzothiazoles, by liquid chromatography-electrospray ionization-tandem mass spectrometry (LC-ESI-MS) over a period of 3 weeks in the influent and effluent of a full-scale MBR with external ultrafiltration that treats tannery wastewater. While naphthalene monosulfonates were completely removed, total naphthalene disulfonate removal was limited to about 40%, and total benzothiazoles concentration decreased for 87%. Quantitative as well as qualitative data did not indicate an adaptation to or a more complete removal of these polar aromatic compounds by the MBR as compared to literature data on conventional activated sludge treatment. While quality improvements in receiving waters for bulk organic matter are documented and the same can be anticipated for apolar particle-associated contaminants, these data provide no indication that MBR will improve the removal of polar poorly biodegradable organic pollutants.  相似文献   

12.
Transmissible spongiform encephalopathies (TSEs, prion diseases) are a class of fatal neurodegenerative diseases affecting a variety of mammalian species including humans. A misfolded form of the prion protein (PrP(TSE)) is the major, if not sole, component of the infectious agent. Prions are highly resistant to degradation and to many disinfection procedures suggesting that, if prions enter wastewater treatment systems through sewers and/or septic systems (e.g., from slaughterhouses, necropsy laboratories, rural meat processors, private game dressing) or through leachate from landfills that have received TSE-contaminated material, prions could survive conventional wastewater treatment. Here, we report the results of experiments examining the partitioning and persistence of PrPTSE during simulated wastewater treatment processes including activated and mesophilic anaerobic sludge digestion. Incubation with activated sludge did not result in significant PrPTSE degradation. PrPTSE and prion infectivity partitioned strongly to activated sludge solids and are expected to enter biosolids treatment processes. A large fraction of PrPTSE survived simulated mesophilic anaerobic sludge digestion. The small reduction in recoverable PrPTSE after 20-d anaerobic sludge digestion appeared attributable to a combination of declining extractability with time and microbial degradation. Our results suggest that if prions were to enter municipal wastewater treatment systems, most would partition to activated sludge solids, survive mesophilic anaerobic digestion, and be present in treated biosolids.  相似文献   

13.
The behavior of polyfluoralkyl acids (PFAAs) from intake (raw source water) to finished drinking water was assessed by taking samples from influent and effluent of the several treatment steps used in a drinking water production chain. These consisted of intake, coagulation, rapid sand filtration, dune passage, aeration, rapid sand filtration, ozonation, pellet softening, granular activated carbon (GAC) filtration, slow sand filtration, and finished drinking water. In the intake water taken from the Lek canal (a tributary of the river Rhine), the most abundant PFAA were PFBA (perfluorobutanoic acid), PFBS (perfluorobutane sulfonate), PFOS (perfluorooctane sulfonate), and PFOA (perfluorooctanoic acid). During treatment, longer chain PFAA such as PFNA (perfluorononanoic acid) and PFOS were readily removed by the GAC treatment step and their GAC effluent concentrations were reduced to levels below the limits of quantitation (LOQ) (0.23 and 0.24 ng/L for PFOS and PFNA, respectively). However, more hydrophilic shorter chain PFAA (especially PFBA and PFBS) were not removed by GAC and their concentrations remained constant through treatment. A decreasing removal capacity of the GAC was observed with increasing carbon loading and with decreasing carbon chain length of the PFAAs. This study shows that none of the treatment steps, including softening processes, are effective for PFAA removal, except for GAC filtration. GAC can effectively remove certain PFAA from the drinking water cycle.The enrichment of branched PFOS and PFOA isomers relative to non branched isomers during GAC filtration was observed during treatment. The finished water contained 26 and 19 ng/L of PFBA and PFBS. Other PFAAs were present in concentrations below 4.2 ng/L The concentrations of PFAA observed in finished waters are no reason for concern for human health as margins to existing guidelines are sufficiently large.  相似文献   

14.
The discharge of relatively small volumes of untreated sewage is a source of wastewater-derived contaminants in surface waters that is often ignored because it is difficult to discriminate from wastewater effluent. To identify raw sewage discharges, we analyzed the two enantiomers of the popular chiral pharmaceutical, propranolol, after derivitization to convert the enantiomers to diastereomers. The enantiomeric fraction (the ratio of the concentration of one of its isomers to the total concentration) of propranolol in the influent of five wastewater treatment plants was 0.50 +/- 0.02, while after secondary treatment it was 0.42 or less. In a laboratory study designed to simulate an activated sludge municipal wastewater treatment system, the enantiomeric fraction of propranolol decreased from 0.5 to 0.43 as the compound underwent biotransformation. In a similar system designed to simulate an effluent-dominanted surface water, the enantiomeric fraction of propranolol remained constant as it underwent biotransformation. Analysis of samples from surface waters with known or suspected discharges of untreated sewage contained propranolol with an enantiomeric fraction of approximately 0.50 whereas surface waters with large discharges of wastewater effluent contained propranolol with enantiomeric fractions similar to those observed in wastewater effluent. Measurement of enantiomers of propranolol may be useful in detecting and documenting contaminants related to leaking sewers and combined sewer overflows.  相似文献   

15.
Recently, a new type of wastewater treatment system became the focus of scientific research: the mesh filter activated sludge system. It is a modification of the membrane bioreactor (MBR), in which a membrane filtration process serves for sludge separation. The main difference is that a mesh filter is used instead of the membrane. The effluent is not of the same excellent quality as with membrane bioreactors due to the much lager pore sizes of the mesh. Nevertheless, it still resembles the quality of currently used standard treatment system, the activated sludge process. The new process shows high future potential as an alternative where a small footprint of these plants is required (3 times lower footprint than conventional activated sludge systems because of neglecting the secondary clarifier and reducing the biological stage). However, so far only limited information on this innovative process is available. In this study, the effect of different pore sizes and different mesh module configurations on the effluent quality was investigated varying the parameters cross-flow velocity (CFV) and flux rate. Furthermore the long-term filtration performance was studied in a pilot reactor system and results were compared to the full-scale conventional activated sludge process established at the same site. The results demonstrate that the configuration of the filter module has little impact on effluent quality and is only of importance with regard to engineering aspects. Most important for a successful operation are the hydrodynamic conditions within the filter module. The statement "the higher the pore size the higher the effluent turbidity" was verified. Excellent effluent quality with suspended solids between 5 and 15 mg L(-1) and high biological elimination rates (chemical oxygen demand (COD) 90-95%, biological oxygen demand (BOD5) 94-98%, total nitrogen (TN) 70-80%, and ammonium nitrogen (NH(4)-N) 95-99%) were achieved and also compared to those of conventional activated sludge systems. Regarding the air requirement for module aeration, which is the main cost factor in MBR technology, an astonishing optimization could be achieved. During the long-term filtration experiments only 4 N m(3)/m(3) was necessary to keep a stable filtration process for more than 3 weeks (MBR 20-50 N m(3)/m(3)).  相似文献   

16.
Nocardia amarae, a mycolic acid-containing bacterium, has often been reported to cause foaming of activated sludge in wastewater treatment plants. In this study, the number of N. amarae cells in the activated sludge process was estimated by enzyme-linked immunosorbent assay (ELISA) with anti-N. amarae polyclonal antibody. Use of the antibody enabled N. amarae to be detected at levels of 10(4) to 10(7) colony forming units. On the other hand, the antibody reacted with only a small portion of activated sludge, in which no N. amarae cells were detected by the plate count method. Competitive ELISA was employed to estimate the N. amarae cells in samples taken from a municipal wastewater treatment plant, including raw wastewater and activated sludge foam. The cell numbers estimated by competitive ELISA corresponded well with those obtained by plate counts. Hence, the antibody produced in this study was shown to be effective for the rapid monitoring of N. amarae in the activated sludge process.  相似文献   

17.
This paper details the characterisation of sludge produced from a trickling filter effluent treatment plant dedicated to the treatment of brewery effluent and reports on centrifuge trials for thickening and dewatering it. Characterisation of the sludge revealed that the total solids content was low and variable, at 2 — 2.5% w/w dried solids (DS), and that the sludge exhibited very poor settling characteristics. A study of the rheological properties of the sludge indicated that at around 2.5% w/w DS the sludge could best be modelled by the Hershel-Bulkley equation. The variation in rheological properties with solids concentration was measured on samples thickened in the laboratory. Large scale dewatering of polyelectrolyte conditioned sludge was carried out using an Alfa Laval decanter centrifuge in order to obtain cake suitable for further processing or disposal. Operational and dosing conditions were varied and a cake with up to 25% w/w DS was produced using cationic polyelectrolytes Zetag-87 & CT85.  相似文献   

18.
A quantitative method was developed for the determination of fluorinated alkyl substances in municipal wastewater influents and effluents. The method consisted of centrifugation followed by large-volume injection (500 microL) of the supernatant onto a liquid chromatograph with a reverse-phase column and detection by electrospray ionization and tandem mass spectrometry. The fluorinated analytes studied include perfluoroalkyl sulfonates, fluorotelomer sulfonates, perfluorocarboxylates, and select fluorinated alkyl sulfonamides. Recoveries of the fluorinated analytes from wastewater treatment plant (WWTP) raw influents and final effluent were in the ranges of 82-100% and 86-100%, respectively. The lower limit of quantitation was 0.5 ng/L depending on the analyte. The method was applied to flow-proportional composites of raw influent and final effluent collected over a 24 h period from 10 WWTPs nationwide. Fluorinated alkyl substances were observed in wastewater at all treatment plants, and each plant exhibited unique distributions of fluorinated alkyl substances despite similarities in treatment processes. In 9 out of the 10 plants sampled, at least one class of fluorinated alkyl substances exhibited increased concentrations in the effluent as compared to the influent concentrations. In some instances, decreases in certain fluorinated analyte concentrations were observed and attributed to sorption to sludge.  相似文献   

19.
The fate of coliphage in a wastewater treatment plant in the central part of Japan was investigated from March to December 2001. A relative abundance of coliphage, 1000-10,000 PFU/ml determined with three different Escherichia coli strains, was detected in the influent. But, no remarkable seasonal change in the phage concentration in the influent was observed during the ten-month test period. Almost ten times higher coliphage concentration was detected by the F+ E. coli strain than by the other two F- strains. The RNA phage was more stable than the DNA phage against aerobic treatment using activated sludge. Most of the phages in the influent and primary settling tank were detected as suspended forms. Anaerobic-aerobic treatment enhanced adsorption of the phage by the solid particles. Almost no phage was detected in the effluent. Aerobic treatment using activated sludge and/or the addition of flocculants such as PAC was effective for the removal of coliphage, an index of enteric viral pollution.  相似文献   

20.
A set of three benzotriazole corrosion inhibitors was analyzed by liquid chromatography-mass spectrometry in wastewaters and in a partially closed water cycle in the Berlin region. Benzotriazole (BTri) and two isomers of tolyltriazole (TTri) were determined in untreated municipal wastewater with mean dissolved concentrations of 12 microg/L (BTri), 2.1 microg/L (4-TTri), and 1.3 microg/L (5-TTri). Removal in conventional activated sludge (CAS) municipal wastewater treatment ranged from 37% for BTri to insignificant removal for 4-TTri. In laboratory batch tests 5-TTri was mineralized completely and 4-TTri was mineralized to only 25%. This different behavior of the three benzotriazoles was confirmed by following the triazoles through a partially closed water cycle, into bank filtrate used for drinking water production, where BTri (0.1 microg/L) and 4-TTri (0.03 microg/ L) but no 5-TTri were detected after a travel time of several months. The environmental half-life appears to increase from 5-TTri over BTri to 4-TTri. Treatment of municipal wastewater by a lab-scale membrane bioreactor (MBR) instead of CAS improved the removal of BTri and 5-TTri but could not avoid their discharge. Almost complete removal was achieved by ozonation of the treatment plant effluent with 1 mg O3/mg DOC.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号