首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A graph G is 1-planar if it can be embedded in the plane in such a way that each edge crosses at most one other edge. Borodin showed that 1-planar graphs are 6-colorable, but his proof does not lead to a linear-time algorithm. This paper presents a linear-time algorithm for 7-coloring 1-plane graphs (which are 1-planar graphs already embedded in the plane). The main difficulty in the design of our algorithm comes from the fact that the class of 1-planar graphs is not closed under the operation of edge contraction. This difficulty is overcome by a structural lemma that may be useful in other problems on 1-planar graphs. This paper also shows that it is NP-complete to decide whether a given 1-planar graph is 4-colorable. The complexity of the problem of deciding whether a given 1-planar graph is 5-colorable is still unknown.  相似文献   

2.
Coloring a k-colorable graph using k colors (k≥3) is a notoriously hard problem. Considering average case analysis allows for better results. In this work we consider the uniform distribution over k-colorable graphs with n vertices and exactly cn edges, c greater than some sufficiently large constant. We rigorously show that all proper k-colorings of most such graphs lie in a single “cluster”, and agree on all but a small, though constant, portion of the vertices. We also describe a polynomial time algorithm that whp finds a proper k-coloring of such a random k-colorable graph, thus asserting that most such graphs are easy to color. This should be contrasted with the setting of very sparse random graphs (which are k-colorable whp), where experimental results show some regime of edge density to be difficult for many coloring heuristics.  相似文献   

3.
We show that, for fixed k, there is a polynomial-time algorithm that finds a maximum (or maximum-weight) stable set in any graph that belongs to the class of k-colorable P5-free graphs, or, more generally, to the class of P5-free graphs that contain no clique of size k+1. This is based on the following structural result: every connected k-colorable P5-free graph has a vertex whose non-neighbors induce a (k−1)-colorable subgraph.  相似文献   

4.
On 3-colorable planar graphs without cycles of four lengths   总被引:1,自引:0,他引:1  
In this article we prove that planar graphs without 4-, 6-, 7-, and 8-cycles are 3-colorable.  相似文献   

5.
We consider the sum coloring and sum multicoloring problems on several fundamental classes of graphs, including the classes of interval and k-claw free graphs. We give an algorithm that approximates sum coloring within a factor of 1.796, for any graph in which the maximum k-colorable subgraph problem is polynomially solvable. In particular, this improves on the previous best known ratio of 2 for interval graphs. We introduce a new measure of coloring, robust throughput}, that indicates how quickly the graph is colored, and show that our algorithm approximates this measure within a factor of 1.4575. In addition, we study the contiguous (or non-preemptive) sum multicoloring problem on k-claw free graphs. This models, for example, the scheduling of dependent jobs on multiple dedicated machines, where each job requires the exclusive use of at most k machines. Assuming that k is a fixed constant, we obtain the first constant factor approximation for the problem.  相似文献   

6.
Although deciding whether the vertices of a planar graph can be colored with three colors is NP-hard, the widely known Grötzsch’s theorem states that every triangle-free planar graph is 3-colorable. We show the first o(n 2) algorithm for 3-coloring vertices of triangle-free planar graphs. The time complexity of the algorithm is $\mathcal{O}(n\log n)Although deciding whether the vertices of a planar graph can be colored with three colors is NP-hard, the widely known Gr?tzsch’s theorem states that every triangle-free planar graph is 3-colorable. We show the first o(n 2) algorithm for 3-coloring vertices of triangle-free planar graphs. The time complexity of the algorithm is O(nlogn)\mathcal{O}(n\log n) .  相似文献   

7.
Systems of polynomial equations with coefficients over a field K can be used to concisely model combinatorial problems. In this way, a combinatorial problem is feasible (e.g., a graph is 3-colorable, hamiltonian, etc.) if and only if a related system of polynomial equations has a solution over the algebraic closure of the field K. In this paper, we investigate an algorithm aimed at proving combinatorial infeasibility based on the observed low degree of Hilbert’s Nullstellensatz certificates for polynomial systems arising in combinatorics, and based on fast large-scale linear-algebra computations over K. We also describe several mathematical ideas for optimizing our algorithm, such as using alternative forms of the Nullstellensatz for computation, adding carefully constructed polynomials to our system, branching and exploiting symmetry. We report on experiments based on the problem of proving the non-3-colorability of graphs. We successfully solved graph instances with almost two thousand nodes and tens of thousands of edges.  相似文献   

8.
Farey sequences of irreducible fractions between 0 and 1 can be related to graph constructions known as Farey graphs. These graphs were first introduced by Matula and Kornerup in 1979 and further studied by Colbourn in 1982, and they have many interesting properties: they are minimally 3-colorable, uniquely Hamiltonian, maximally outerplanar and perfect. In this paper, we introduce a simple generation method for a Farey graph family, and we study analytically relevant topological properties: order, size, degree distribution and correlation, clustering, transitivity, diameter and average distance. We show that the graphs are a good model for networks associated with some complex systems.  相似文献   

9.
The graph reconstruction conjecture is a long-standing open problem in graph theory. There are many algorithmic studies related to it, such as DECK CHECKING, LEGITIMATE DECK, PREIMAGE CONSTRUCTION, and PREIMAGE COUNTING. We study these algorithmic problems by limiting the graph class to interval graphs. Since we can solve GRAPH ISOMORPHISM for interval graphs in polynomial time, DECK CHECKING for interval graphs is easily done in polynomial time. Since the number of interval graphs that can be obtained from an interval graph by adding a vertex and edges incident to it can be exponentially large, developing polynomial time algorithms for LEGITIMATE DECK, PREIMAGE CONSTRUCTION, and PREIMAGE COUNTING on interval graphs is not trivial. We present that these three problems are solvable in polynomial time on interval graphs.  相似文献   

10.
On approximating the longest path in a graph   总被引:6,自引:0,他引:6  
We consider the problem of approximating the longest path in undirected graphs. In an attempt to pin down the best achievable performance ratio of an approximation algorithm for this problem, we present both positive and negative results. First, a simple greedy algorithm is shown to find long paths in dense graphs. We then consider the problem of finding paths in graphs that are guaranteed to have extremely long paths. We devise an algorithm that finds paths of a logarithmic length in Hamiltonian graphs. This algorithm works for a much larger class of graphs (weakly Hamiltonian), where the result is the best possible. Since the hard case appears to be that of sparse graphs, we also consider sparse random graphs. Here we show that a relatively long path can be obtained, thereby partially answering an open problem of Broderet al. To explain the difficulty of obtaining better approximations, we also prove hardness results. We show that, for any ε<1, the problem of finding a path of lengthn-n ε in ann-vertex Hamiltonian graph isNP-hard. We then show that no polynomial-time algorithm can find a constant factor approximation to the longest-path problem unlessP=NP. We conjecture that the result can be strengthened to say that, for some constant δ>0, finding an approximation of ration δ is alsoNP-hard. As evidence toward this conjecture, we show that if any polynomial-time algorithm can approximate the longest path to a ratio of , for any ε>0, thenNP has a quasi-polynomial deterministic time simulation. The hardness results apply even to the special case where the input consists of bounded degree graphs. D. Karger was supported by an NSF Graduate Fellowship, NSF Grant CCR-9010517, and grants from the Mitsubishi Corporation and OTL. R. Motwani was supported by an Alfred P. Sloan Research Fellowship, an IBM Faculty Development Award, grants from Mitsubishi and OTL, NSF Grant CCR-9010517, and NSF Young Investigator Award CCR-9357849, with matching funds from IBM, the Schlumberger Foundation, the Shell Foundation, and the Xerox Corporation, G. D. S. Ramkumar was supported by a grant from the Toshiba Corporation. Communicated by M. X. Goemans.  相似文献   

11.
The cyclic antibandwidth problem is to embed the vertices of a graph G of n vertices on a cycle C n such that the minimum distance (measured in the cycle) of adjacent vertices is maximized. Exact results/conjectures for this problem exist in the literature for some standard graphs, such as paths, cycles, two-dimensional meshes, and tori, but no algorithm has been proposed for the general graphs in the literature reviewed by us so far. In this paper, we propose a memetic algorithm for the cyclic antibandwidth problem (MACAB) that can be applied on arbitrary graphs. An important feature of this algorithm is the use of breadth first search generated level structures of a graph to explore a variety of solutions. A novel greedy heuristic is designed which explores these level structures to label the vertices of the graph. The algorithm achieves the exact cyclic antibandwidth of all the standard graphs with known optimal values. Based on our experiments we conjecture the cyclic antibandwidth of three-dimensional meshes, hypercubes, and double stars. Experiments show that results obtained by MACAB are substantially better than those given by genetic algorithm.  相似文献   

12.
As part of the efforts to understand the intricacies of the k-colorability problem, different distributions over k-colorable graphs have been analyzed. While the problem is notoriously hard (not even reasonably approximable) in the worst case, the average case (with respect to such distributions) often turns out to be “easy”. Semi-random models mediate between these two extremes and are more suitable to imitate “real-life” instances than purely random models. In this work we consider semi-random variants of the planted k-colorability distribution. This continues a line of research pursued by Coja-Oghlan, and by Krivelevich and Vilenchik. Our aim is to study a more general semi-random framework than those suggested so far. On the one hand we show that previous algorithmic techniques extend to our more general semi-random setting; on the other hand we give a hardness result, proving that a closely related semi-random model is intractable. Thus we provide some indication about which properties of the input distribution make the k-colorability problem hard.  相似文献   

13.
An enhanced concept of sub-optimal reverse Horn fraction of a CNF-formula was introduced in [18]. It was shown that this fraction is very useful in effectively (almost) separating 3-colorable random graphs with fixed node-edge density from the non-3-colorable ones. A correlation between this enhanced sub-optimal reverse Horn fraction and satisfiability of random 3-SAT instances with a fixed density was observed. In this paper, we present experimental evidence that this correlation scales to larger-sized instances and that it extends to solver performances as well, both of complete and incomplete solvers. Furthermore, we give a motivation for various phases in the algorithm aHS, establishing the enhanced sub-optimal reverse Horn fraction, and we present clear evidence for the fact that the observed correlations are stronger than correlations between satisfiability and sub-optimal MAXSAT-fractions established similarly to the enhanced sub-optimal reverse Horn fraction. The latter observation is noteworthy because the correlation between satisfiability and the optimal MAXSAT-fraction is obviously 100%. AMS subject classification 90C05, 03B99, 68Q01, 68W01  相似文献   

14.
We introduce a class of layered graphs which we call (k,2)-partite and which we argue are an interesting class because of several important applications. We show that testing for (k,2)-partiteness can be done efficiently both on sequential and parallel machines, by showing that membership is in NSPACE(log n) and in NC2. We show that (k,2)-partite graphs have bounded path width. We then show that a particular NP-complete problem, namely Maximum Independent Set, is solvable in linear time on bounded pathwidth graphs if the path decomposition is included in the input. Finally, we show that the Maximum Independent Set problem is in NC2 for (k,2)-partite graphs. We note that linear time solutions for certain NP-complete problems have been shown for a wider class of graphs, namely partial k-trees. Our linear time algorithm is somewhat simpler in structure. We conjecture that our techniques can be used on many NP-complete problems to yield efficient algorithms for (k,2)-partite graphs.  相似文献   

15.
关于互连网络的几个猜想   总被引:2,自引:0,他引:2       下载免费PDF全文
n-立方体是著名的互连网络,星图、煎饼图和冒泡排序图是由凯莱图模型设计出来的重要的互连网络。对换树(transposition tree)的凯莱图是一类特殊的凯莱图,星图和冒泡排序图分别是对换树为星和路的凯莱图。给出了关于n-立方体、星图、煎饼图、冒泡排序图和对换树的凯莱图的各一个猜想;提出了对换图的凯莱图的概念,进而由这一概念设计出了两个互连网络——圈图和轮图,并证明冒泡排序图和星图分别可嵌入圈图和轮图。  相似文献   

16.
图同构的一个充分必要条件   总被引:2,自引:0,他引:2       下载免费PDF全文
图同构的判定性问题是图论理论中的一个难问题,至今没有得到彻底解决。Ulam曾经提出过一个判定图同构的猜想,也称为图的重构猜想。提出了一个新的判定图同构的充分必要条件,即在子图同构的前提下,根据新增顶点及相应关联边的关系,判断母图同构的充分必要条件。基于具有同构关系的对应点无限衍生技术,采用数学归纳法证明了这个充分必要条件的成立。  相似文献   

17.
Suppose k runners having different constant speeds run laps on a circular track of unit length. The Lonely Runner Conjecture states that, sooner or later, any given runner is at distance at least 1/k from all the other runners. We prove here that the statement of the conjecture holds if we eliminate only one chosen runner. The proof uses a simple double-counting argument in the setting of finite fields. We also demonstrate that the original problem reduces to an analogous statement in particular ring Zn, where n is the sum of speeds of two distinct runners. In consequence we obtain a simple computational procedure for verifying the conjecture for any given set of integer speeds. Finally we derive some simple consequences of our results for coloring integer distance graphs.  相似文献   

18.
We explore three important avenues of research in algorithmic graph-minor theory, which all stem from a key min-max relation between the treewidth of a graph and its largest grid minor. This min-max relation is a keystone of the Graph Minor Theory of Robertson and Seymour, which ultimately proves Wagner’s Conjecture about the structure of minor-closed graph properties. First, we obtain the only known polynomial min-max relation for graphs that do not exclude any fixed minor, namely, map graphs and power graphs. Second, we obtain explicit (and improved) bounds on the min-max relation for an important class of graphs excluding a minor, namely, K 3,k -minor-free graphs, using new techniques that do not rely on Graph Minor Theory. These two avenues lead to faster fixed-parameter algorithms for two families of graph problems, called minor-bidimensional and contraction-bidimensional parameters, which include feedback vertex set, vertex cover, minimum maximal matching, face cover, a series of vertex-removal parameters, dominating set, edge dominating set, R-dominating set, connected dominating set, connected edge dominating set, connected R-dominating set, and unweighted TSP tour. Third, we disprove a variation of Wagner’s Conjecture for the case of graph contractions in general graphs, and in a sense characterize which graphs satisfy the variation. This result demonstrates the limitations of a general theory of algorithms for the family of contraction-closed problems (which includes, for example, the celebrated dominating-set problem). If this conjecture had been true, we would have had an extremely powerful tool for proving the existence of efficient algorithms for any contraction-closed problem, like we do for minor-closed problems via Graph Minor Theory.  相似文献   

19.
图同构的判定性问题是图论理论中的一个难题,至今没有得到彻底解决。受Ulam猜想的启发,提出了一个新的判定图同构的充分必要条件:在子图同构的前提下,根据新增顶点及相应关联边的关系,利用子图同构函数,判断父图同构的充分必要条件。基于具有同构关系的对应点无限衍生技术,采用反证法证明了这个充分必要条件的成立。设计并实现了图同构的一个判定算法,通过实例验证了算法的正确性和有效性。  相似文献   

20.
The intention of this note is to motivate the researchers to study Hadwiger's conjecture for circular arc graphs. Let η(G) denote the largest clique minor of a graph G, and let χ(G) denote its chromatic number. Hadwiger's conjecture states that η(G)?χ(G) and is one of the most important and difficult open problems in graph theory. From the point of view of researchers who are sceptical of the validity of the conjecture, it is interesting to study the conjecture for graph classes where η(G) is guaranteed not to grow too fast with respect to χ(G), since such classes of graphs are indeed a reasonable place to look for possible counterexamples. We show that in any circular arc graph G, η(G)?2χ(G)−1, and there is a family with equality. So, it makes sense to study Hadwiger's conjecture for this family.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号