首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The biomimetic method is used to obtain hydroxyapatite (HAP) coatings on Ti6Al4V, Ti and AISI 316L SS substrates. These substrates with different pretreatment surface operations (HNO3, anodic polarization, base-acid) were immersed in concentrated simulated body fluids (SBF) for different days at physiologic conditions of 37°C, initial pH of 7.4. Then the corrosion behaviours of substrates after immersion in concentrated SBF were examined by electrochemical methods in Ringer’s and 0.9 wt% NaCl solutions at a temperature of 37°C. Ions concentrations and pH analyses were carried out after incubation in concentrated SBF. After immersion in SBF for different days, the surface morphology remains almost unchanged and no apatite formation is observed. Corrosion currents of substrates increased after immersion. Ions concentrations and pH values were shown variability according to soaking time and pretreatment surface operations.  相似文献   

2.
采用电泳沉积法在 Ti6Al4V 基体上形成碳酸钙/聚苯胺复合涂层,然后经磷酸缓冲溶液 37 ℃下浸泡处理得到介孔碳酸根型羟基磷灰石/聚苯胺复合涂层。无裂纹的碳酸钙/聚苯胺复合涂层通过溶解-沉积反应转化成具有片状结构的碳酸根型羟基磷灰石/聚苯胺复合涂层,介孔和大孔分别存在于片状磷灰石内部和之间。模拟体液浸泡实验表明,多孔结构可以提高涂层的体外磷灰石形成活性,类骨型磷灰石首先沉积在介孔上,然后随着浸泡时间的延长逐渐覆盖所有大孔。此外,碳酸根型羟基磷灰石/聚苯胺复合涂层的体外磷灰石形成活性与聚苯胺纳米线有关,聚苯胺上的官能团(H2PO4-)不仅可以提高局部过饱和度,而且可以促进类骨型磷灰石的形核和生长。  相似文献   

3.
Preparation and characterization of bioactive glass nanopowder and development of bioglass coating for biocompatibility improvement of 316L stainless steel (SS) implant was the aim of this work. Bioactive glass nanopowder was made by sol–gel technique and transmission electron microscopy (TEM) technique was utilized to evaluate the powders shape and size. The prepared bioactive glass nanopowder was immersed in the simulated body fluid (SBF) solution at 37 °C for 30 days. Fourier transform infrared spectroscopy (FTIR) was utilized to recognize and confirm the formation of apatite layer on the prepared bioactive glass nanopowder. Bioactive glass coating was performed on SS substrate by sol–gel technique. X-ray diffraction (XRD), scanning electron microscopy (SEM) and energy dispersive X-ray analysis (EDX) techniques were used to investigate the microstructure and morphology of the coating. Electrochemical polarization tests were performed in physiological solutions at 37 °C in order to determine and compare the corrosion behavior of the coated and uncoated SS specimens. Cyclic polarization tests were performed in order to compare the pitting corrosion resistance of the coated and uncoated SS specimens. The results showed that the size of bioactive glass powder was less than 100 nm. The formation of apatite layer confirmed the bioactivity of bioglass nanopowder. Bioactive glass coating could improve the corrosion resistance of 316L SS substrate. Bioactive glass coated 316L SS showed more pitting corrosion resistance in compare with pristine samples. It was concluded that by using the bioactive glass coated 316L SS as a human body implant, improvement of corrosion resistance as an indication of biocompatibility and bone bonding could be obtained simultaneously.  相似文献   

4.
采用电泳沉积法在Ti6Al4V基体上形成碳酸钙/聚苯胺复合涂层,然后经磷酸缓冲溶液37℃下浸泡处理得到介孔碳酸根型羟基磷灰石/聚苯胺复合涂层.无裂纹的碳酸钙/聚苯胺复合涂层通过溶解-沉积反应转化成具有片状结构的碳酸根型羟基磷灰石/聚苯胺复合涂层,介孔和大孔分别存在于片状磷灰石内部和之间.模拟体液浸泡实验表明,多孔结构可以提高涂层的体外磷灰石形成活性,类骨型磷灰石首先沉积在介孔上,然后随着浸泡时间的延长逐渐覆盖所有大孔.此外,碳酸根型羟基磷灰石/聚苯胺复合涂层的体外磷灰石形成活性与聚苯胺纳米线有关,聚苯胺上的官能团( H2PO4)不仅可以提高局部过饱和度,而且可以促进类骨型磷灰石的形核和生长.  相似文献   

5.
王军  刘莹 《表面技术》2016,45(11):76-80
目的研究316L不锈钢生物医用材料植入体内初期的表面行为。方法在模拟体液中,采用浸泡实验,表征了316L不锈钢浸泡不同时间的表面形貌、润湿性及耐腐蚀性。结果白光干涉测试结果表明,样品表面粗糙度随浸泡时间的延长而变大。浸泡1 d后,在样品表面出现大量无规则的腐蚀坑,腐蚀坑内出现金属的溶蚀。润湿性测试结果显示,随浸泡时间的延长,316L不锈钢的接触角减小,亲水性增强,表面能增加。电化学测试表明,浸泡1周后,316L不锈钢的自腐蚀电流为浸泡前的3倍多,腐蚀速度增大,耐腐蚀性变差。结论在模拟体液中,316L不锈钢表面存在局部腐蚀,材料的表面形貌、成分、润湿性及耐腐蚀性均发生改变。  相似文献   

6.
彭超  赵晓兵 《表面技术》2017,46(5):127-132
目的等离子喷涂TiO_2涂层是生物惰性材料,不能与骨组织很好地结合,制备TiO_2-CaF_2复合涂层以提高氧化钛涂层的体外生物矿化能力。方法利用等离子喷涂技术在医用Ti合金表面制备TiO_2-CaF_2复合涂层。采用X射线衍射仪(XRD)、扫描电子显微镜(SEM)和拉曼光谱仪(Raman)对复合涂层的微观结构进行表征,利用接触角仪、三维轮廓仪和电化学工作站考察复合涂层的接触角、表面粗糙度和耐腐蚀性能。采用模拟体液(SBF)浸泡实验考察复合涂层的体外矿化能力。结果 TiO_2和TiO_2-20%CaF_2涂层主要由金红石型TiO_2构成,其中含有少量的锐钛矿型TiO_2成分。20%CaF_2的掺杂会促进金红石型TiO_2的形成。CaF_2的加入可改变TiO_2涂层的表面形貌,表面粗糙度Ra从4.96μm降低至0.94μm,亲水性也得到增强。TiO_2-CaF_2复合涂层在SBF中的耐腐蚀性能也较TiO_2涂层有所提高。经SBF浸泡28 d后,TiO_2-CaF_2复合涂层表面可沉积类骨磷灰石,显示了较好的体外矿化能力,而TiO_2涂层则无此能力。结论 CaF_2的掺杂可使TiO_2涂层的表面粗糙度下降,亲水性增强,耐腐蚀性增强。体外矿化实验结果表明,TiO_2-CaF_2复合涂层表面可沉积类骨磷灰石,显示了较好的生物活性。  相似文献   

7.
In order to obtain bioactivity on the surface of titanium alloy, the bioceramic coating on Ti–6Al–4V was designed and fabricated by laser cladding. The microstructure and bioactivity of laser-cladded bioceramic coating were investigated in vitro via soaking in a simulated body fluid (SBF). The results indicated that the laser-cladded bioceramic coating was metallurgically bonded to the substrate and contained such bioactive phases as hydroxyapatite (HA) and β-tricalcium phosphate (β-TCP). A bone-like apatite layer was spontaneously formed on the surface of laser-cladded coating merely soaked in SBF for 7 days. And the appearance of flake-like and cotton-like morphology, which is the characteristic morphology of apatite, offered an advantageous condition for osseo-connection. The formation ability of apatite was remarkably accelerated on the surface of laser-cladded bioceramic coating compared with the untreated titanium alloy substrate.  相似文献   

8.
Effects of plasma treatment on bioactivity of TiO2 coatings   总被引:1,自引:0,他引:1  
In this work, nano-TiO2 powders were deposited on titanium alloy substrates by atmospheric plasma spraying, followed by plasma immersion ion implantation (PIII) using hydrogen, oxygen and ammonia gases. The bioactivities of PIII-treated TiO2 coatings were evaluated by the formation of apatite on their surface after soaked in simulated body fluids (SBF) for a period of time. As-sprayed TiO2 coating is composed of rutile, anatase and TiO2−x (most of them is Ti3O5). After immersion in SBF for two weeks, the hydrogen PIII-treated TiO2 coating can induce bone-like apatite formation on its surface but apatite cannot be formed on the surface of as-sprayed and oxygen, ammonia PIII-treated TiO2 coatings. The results obtained indicated that a hydrogenated surface plays a very important role to induce bioactivity of TiO2 coatings.  相似文献   

9.
Abstract

The surface modification of untreated, alkali treated and alkali heat treated titanium has been investigated by electrochemical impedance spectroscopic technique. The substrates were treated with 10M NaOH aqueous solutions and subsequently heat treated at 600°C, a thin sodium titanium layer was formed on their surfaces. Thus, the treated substrates formed a dense and uniform bone-like apatite layer on their surfaces in simulated body fluid (SBF) solution. This indicates that the alkali and heat treated titanium bond to living bone through the bonelike apatite layer formed on their surface in the body. Electrochemical impedance spectroscopic (EIS) experiments were performed in SBF solution as a function of immersion time. Data of EIS were taken for untreated and the results revealed the formation of one additional layer along with the barrier layer. In case of alkali treated sample, titania gel layer alone dissolves completely and forms apatite and barrier layers, whereas, the alkali and heat treated samples showed three layers namely apatite, gel and barrier layers. The nature of these layers has been obtained by fitting the EIS data to suitable equivalent electrical circuit models. The alkali heat treated titanium results in the faster apatite nucleation and growth on the surface. Immersion in SBF solution exhibited higher apatite film resistance compared to alkali treated and untreated titanium substrate.  相似文献   

10.
Calcium phosphate ceramic such as hydroxyapatite (HA) is good candidate for bone substitutes due to their chemical and structural similarity to bone minerals. The bone mineral consists of tiny hydroxyapatite crystals in the nanoregime. Nanostructured hydroxyapatite is also expected to have better bioactivity than coarser crystals. This paper reports on the preparation and in vitro evaluation of bone-like hydroxyapatite nanopowder. The sol–gel prepared hydroxyapatite nanopowder was characterized for its phase purity, chemical homogeneity and bioactivity. Fourier transform infrared (FTIR) spectroscopy was used to identify the functional groups. X-ray diffraction (XRD) analysis was carried out to study the phase composition, crystallinity and the crystallite size of hydroxyapatite nanopowders that were sintered at different temperatures. The in vitro test was performed in a stimulated body fluid (SBF) medium. The changes of the pH of SBF medium were measured at pre-determined time intervals using a pH meter. The dissolution of calcium ions in SBF medium was determined by an atomic absorption spectrometer (AAS). FTIR result combined with the X-ray diffraction exhibited single phase of hydroxyapatite with carbonate peaks in the FTIR spectrum. The results indicate that increasing the sintering temperature increases the crystallinity and the crystallite size of hydroxyapatite nanopowders. Photomicrograph of transmission electron microscopy (TEM) showed that the obtained powder after sintering at 600 °C is composed of hydroxyapatite nanoparticles (20–30 nm). Dissolution rate of hydroxyapatite nanopowders was higher than conventional hydroxyapatite powders and closer to biological apatite due to its nanostructure dimensions. It was concluded that sol–gel prepared hydroxyapatite nanopowders had superior bioresorption and similar chemical and crystal structure to natural bone apatite.  相似文献   

11.
为了提高316L不锈钢的生物活性,采用激光熔覆(LC)技术在316L不锈钢表面制备钛层,然后利用等离子体电解氧化(PEO)技术在钛层上形成多孔陶瓷涂层。采用三维表面轮廓仪、SEM、EDS、XRD和XPS等测试方法对涂层试样的形貌、微观结构和组成进行表征。通过动电位极化曲线和模拟体液(SBF)浸泡试验,分别对涂层的耐腐蚀性和生物活性进行评价。结果表明,多孔陶瓷涂层主要由锐钛矿和金红石组成,并检测到高结晶HA。陶瓷涂层的主要元素为Ca、P、Ti和O。在模拟体液中,LC+PEO复合生物涂层比316L基质具有更优异的耐腐蚀性,并且复合涂层能有效提高316L不锈钢的生物活性。  相似文献   

12.
Wollastonite coatings were deposited on the U-shape titanium alloy coupons by atmospheric plasma spraying.The effect of applied stresses on the microstructure and dissolution behavior of wollastonite coatings was investigated.The microstructure and composition of coatings were examined by scanning electron microscope(SEM)and electron diffraction spectroscopy(EDS).In addition,the dissolution behavior of coatings was evaluated by immersion in simulated body fluid(SBF).More apatite is observed on the surface of coatings under a tensile stress and a stress-free condition after immersion in the SBF solution,whereas almost no apatite can be found for the coatings under a compressive stress.The dissolution rate of coatings characterized by the pH changes and the ion concentration of Ca,Si and P in the SBF solution is lower under the compressive stress than those under a tensile stress or a stress-free condition.It can be concluded from the experimental results that the compressive stress inhibits the dissolution of wollastonite coatings and the formation of apatite,whereas a tensile stress enhances the two processes.  相似文献   

13.
周生健  白玉  迟柏祥  尹雪  马文 《表面技术》2019,48(7):340-346
目的 采用悬浮液等离子喷涂技术(SPS)在纯钛表面制备氟代羟基磷灰石/硅酸钙(FHA/CS)生物复合涂层。方法 利用X射线衍射仪(XRD)、傅里叶红外光谱仪(FT-IR)、扫描电子显微镜(SEM)及能谱仪(EDS)对复合涂层的物相组成、组织结构和显微形貌进行分析。通过动电位极化测试和体外生物活性测试,分析复合涂层在模拟体液(SBF)中的腐蚀行为和类骨磷灰石形成能力。通过电感耦合等离子体光谱仪(ICP)分析涂层中Ca2+的释放行为,评估复合涂层的化学稳定性。采用划痕法表征涂层的结合强度。结果 SPS制备的复合涂层具有粗糙的表面和层片堆叠结构。涂层中FHA和CS两相分布均匀,结晶性良好。复合涂层临界载荷达到111.43 N,比单一FHA涂层提高62.5%。与纯钛相比,涂层样品具有较高的腐蚀电位(Ecorr)和较低的腐蚀电流密度(Jcorr)。在SBF溶液中浸泡3天,涂层样品表面被类骨磷灰石完全覆盖。ICP结果表明,复合涂层中Ca2+释放速率低于单一CS涂层。结论 通过SPS在纯钛表面制备的FHA/CS复合涂层具有良好的生物活性、耐腐蚀性能和与基体的结合强度,复合涂层中FHA组分的存在有利于提高涂层的化学稳定性。  相似文献   

14.
The main aim of this study is to evaluate corrosion and biocompatibility behavior of thermal spray hydroxyapatite (HA) and hydroxyapatite/titania bond (HA/TiO2)-coated 316L stainless steel (316L SS). In HA/TiO2 coatings, TiO2 was used as a bond coat between HA top coat and 316L SS substrate. The coatings were characterized by x-ray diffraction and scanning electron microscopy/energy dispersive spectroscopy, and corrosion resistance determined for the uncoated substrate and the two coatings. The biological behavior was investigated by the cell culture studies using osteosarcoma cell line KHOS-NP (R-970-5). The corrosion resistance of the steel was found to increase after the deposition of the HA and HA/TiO2 bond coatings. Both HA, as well as, HA/TiO2 coatings exhibit excellent bond strength of 49 and 47?MPa, respectively. The cell culture studies showed that HA-coated 316L SS specimens appeared more biocompatible than the uncoated and HA/TiO2-coated 316L SS specimens.  相似文献   

15.
Crack-free mesoporous titania films (MTFs) on Ti6Al4V demonstrated potential application for implanting and bone regeneration materials in the future. The MTFs were prepared on Ti6Al4V substrate by an evaporation-induced self-assembly (EISA) process. The BET surface area, pore volume, and pore size of the MTFs samples were calculated to be 190 m2/g, 0.31 cm3/g, and 4.8 nm, respectively. The apatite-forming ability of the MTFs was evaluated by immersing them in simulated body fluid (SBF). After immersion in SBF for 5 days, bone-like apatite was induced on the surface of the MTFs. With increasing immersion time, the apatite would continue to grow and cover the surface of the MTFs. The apatite induced by MTFs contains Mg and Na ions, carbonated moieties and nano-network structure. In this work, preliminary investigation of the MG63 cell proliferation on the surface of the MTFs was also conducted. The cell experiment indicated that the MTFs possessed good biocompatibility and can thus provide a surface suitable for MG63 cell proliferation. The effects of surface properties and mesostructure on inducing apatite and cell proliferation were also discussed.  相似文献   

16.
表面生物活性涂层构建是提升金属内植物骨整合能力的有效途径,本研究利用电化学沉积技术在多孔钽支架表面构建生物活性羟基磷灰石(HA)涂层。通过接触角和比表面积测试发现,HA涂层的构建显著提升了多孔钽表面亲水性,并增加了其比表面积。利用模拟体液浸泡试验评估支架生物活性,发现仅浸泡3天后,多孔钽支架表面就已被类骨磷灰石沉积所覆盖。建成骨细胞培养模型,通过激光共聚焦观察及细胞增殖测试发现,所有支架均具有良好的细胞相容性。并且,细胞共培养5天后,HA涂层化多孔钽支架表面细胞的增殖率分别是未改性材料组和空白对照组的1.1和1.4倍,呈现了更大的促细胞增殖潜力。本研究中所制备的生物活性多孔钽支架具备快速诱导类骨磷灰石沉积能力,能够促进成骨细胞在其表面的贴附和增殖,在骨修复领域具有较大的临床应用前景。  相似文献   

17.
Hydroxyapatite/titania (HA/TiO2) double layers were coated onto Ti scaffolds throughout for orthopaedic applications by sol-gel method. Differential scanning calorimetry (DSC), thermogravimetric analysis (TG) and X-ray diffractometry (XRD) were used for the characterisation of the phase transformations of the dried gels and coated surface structures. Scanning electron microscope (SEM) equipped with energy dispersive spectrometry (EDS) was used for the observation and evaluation of the morphology and phases of the surface layers and for the assessment of the in vitro tests. The in vitro assessments were performed by soaking the HA/TiO2 double coated samples into the simulated body fluid (SBF) for various periods. The TiO2 layer was coated by a dipping-coating method at a speed of 12 cm/min, followed by a heat treatment at 600 ℃ for 20 min. The HA layer was subsequently dipping-coated on the outer surface at the same speed and then heat-treated at difference temperatures. The results indicat that the HA phase begins to crystallize after a heat treatment at 560 ℃. The crystallinity increases obviously at 760 ℃. SEM observations find no delamination or crack at the interfaces of HA/TiO2 and TiO2/Ti. The HA/TiO2 coated Ti scaffolds displays excellent bone-like apatite forming ability when it is soaked into SBF. Ti scaffolds after HA/TiO2 double coatings can be anticipated as promising implant materials for orthopaedic applications  相似文献   

18.
We report on poly(ε-caprolactone) (PCL) containing bovine bone hydroxyapatite (HA) and hydroxyapatite-silver (HA-Ag) composite nanofibers prepared via an electrospinning process for the biomedical applications. Bioactivity test was conducted by incubation in simulated body fluid (SBF). The morphology, structure and thermal properties of the PCL, PCL/HA and PCL/HA-Ag composite nanofibers before and after immersion in SBF were characterized by scanning electron microscopy (SEM), energy dispersive X-ray (EDX) spectroscopy, X-ray diffraction (XRD), Fourier transform-infrared (FT-IR) spectroscopy and thermogravimetry (TGA). SEM images revealed that the nanofibers are well-oriented and incorporated the HA-Ag nanoparticles well. The SBF incubation test confirmed that the fast formation of apatite-like materials suggests in vitro bioactive behavior of the nanofibers. Mechanical study revealed that the yield stress of PCL/HA-Ag composite nanofibers showed a higher value than that of PCL/HA composite, possibly due to the addition of metallic Ag nanoparticles. This study demonstrated that electrospun PCL/HA and PCL/HA-Ag composite nanofibers activates bioactivity and supports growth of apatite-like materials.  相似文献   

19.
Surface and interface analysis of HAP/TiO2 composite films on Ti6Al4V   总被引:1,自引:0,他引:1  
The composite films constituted of hydroxyapatite (HAP) submicron particles embedded in the gel composed of the titania nanoparticles were prepared on commercial Ti6Al4V plates with titania buffer layer obtained by a spin-coating technique. The films were annealed in air at 450 ℃, 550 ℃ and 650 ℃, respectively. The phase formation, surface morphology, andinterfacial microstructure of the films were investigated by X-ray diffraction(XRD),Fourier transform infrared spectroscopy (FT-IR), field emission-scanning electron microscopy(FE-SEM) and energy dispersive X-ray (EDS) analysis. The results show that the as-prepared films are all well-crystallized, dense,homogeneous, and there was a close interfacial bond between the film and the substrate. The results of adhesion test indicate that there is a good bonding strength between the film and the substrate. The bone-like apatite formation on the surface of the films after immersion in acellular simulatedbody fluid(SBF) validated their bioactivities.  相似文献   

20.
In this work, two types of CP Ti cubes with similar volumetric energy densities (VED) but different process parameters were produced using laser powder bed fusion (LPBF) method. The corrosion behavior of the fabricated specimens was investigated by conducting electrochemical impedance spectroscopy (EIS) and polarization experiments in simulated body fluid (SBF) solution at 37 °C. The results indicated that the microstructure and porosities, which are of great importance for biomedical applications, can be controlled by changing the process parameters even under constant energy densities. The sample produced with a lower laser power (E1) was featured with a higher level of porosity and thinner alpha laths, as compared with the sample fabricated with a higher laser power (E2). Moreover, results obtained from the bioactivity tests revealed that the sample produced with a higher laser power conferred a slight improvement in the bioactivity due to the higher amount of porosity. Lower laser power and hence higher porosity level promoted the formation of bone-like apatite on the surface of the printed specimens. The potentiodynamic polarization tests revealed inferior corrosion resistance for the fabricated sample with higher porosity. Moreover, the EIS results after different immersion times indicated that a stable oxide film was formed on the surface of samples for all immersion times. After 1 and 3 days of immersion, superior passivation behavior was observed for the sample fabricated with lower laser power. However, very similar impedance and phase values were observed for all the samples after 14 days of immersion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号