首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 656 毫秒
1.
A study on corrosion fatigue was experimentally conducted for the as-welded and PWHT specimens of the steels, HT80 and SM53B in 3.5% NaCl solution. Submerged arc welding was done. PWHT was carried out at comparatively high temperature of 650° C. Besides, in order to simulate the residual stress in weld HAZ, the stress of 98MPa was applied during PWHT. Corrosion fatigue crack growth was dependent upon the materials and PWHT conditions. In the case of HT80, crack growth in corrosion environment was faster than that in air. However, the crack growth of the main crack for SM53B in 3.5% NaCl solution was decreased in comparison with that in air, unlike HT80. The sensitivity to corrosion environment was reduced due to PWHT. The applied stress in HAZ during PWHT acted to enhance the crack growth compared with that of the PWHT specimen without stress.  相似文献   

2.
The present study evaluates the influences of PWHT on FCG behavior and tensile properties of TIG butt welded Al 6013-T4 sheets. Crack propagation tests were carried out on compact tension (CT) specimens. The T82 heat treatment was varied in three artificial aging times (soaking) of 6, 18 and 24 hours. The results of T82 heat treatment with artificial aging variations were tested for their fatigue crack growth rates at the main metal zone, the heat-affected zone (HAZ), and the welded metal zone. It has been observed that the various agings in heat treatment T82 are sensitive to the mechanical properties (fatigue crack growth rate test, tensile test). The results show that PWHT-T82 for 18 hours aging is the highest fatigue resistance, while the aging 18 hours provided the highest tensile test result.  相似文献   

3.
Corrosion fatigue crack growth behaviours were experimentally evaluated for the parent metal, as-welded and PWHT specimens of SM53B steel. Multi-pass welding was done by a submerged arc welder. Metallographic observations along the weld fusion boundary were made to investigate the variation of microstructures through the thickness direction. PWHT was carried out at 650°C with holding time of 1/4hr and 40hr. The corrosion fatigue test was conducted in 3.5% NaCl solution with the frequency of 3Hz. In all cases, crack growth in corrosive environment was faster than that of in air. Besides, at the low †K region, crack growth was greatly influenced by corrosive environment and the heat treatment condition.  相似文献   

4.
The statistical aspects of fatigue crack growth life of base metal (BM), weld metal (WM) and heat affected zone (HAZ) in friction stir welded (FSWed) 7075-T651 aluminum alloy has been studied by Weibull statistical analysis. The fatigue crack growth tests were performed at room temperature on ASTM standard CT specimens under three different constant stress intensity factor range controls. The main objective of this paper is to investigate the effects of statistical aspects of fatigue crack growth life on stress intensity factor ranges and material properties, namely BM, WM and HAZ specimens. In this work, the Weibull distribution was employed to estimate the statistical aspects of fatigue crack growth life. The shape parameter of Weibull distribution for fatigue crack growth life was significantly affected by material properties and the stress intensity factor range. The scale parameter of WM specimen exhibited the lowest value at all stress intensity factor ranges.  相似文献   

5.
Strain-controlled low-cycle fatigue tests and microstructural evaluation were performed on a friction stir welded 2219-T62 aluminum alloy with varying welding parameters and cooling conditions. Cyclic hardening of friction stir welded joints was appreciably stronger than that of the base material. The cyclic stress amplitude increased, and plastic strain amplitude and fatigue lifetime slightly decreased with increasing welding speed from 60 to 200 mm/min but were only weakly dependent of the rotational rate between 300 and 1,000 rpm with air cooling. Friction stir welded joints with water cooling had higher stress amplitude and fatigue life than that with air cooling. Fatigue failure of the joint occurred in the HAZ where the soft zone was present, with crack initiation from the specimen surface or near-surface defect and crack propagation characterized by typical fatigue striations.  相似文献   

6.
A new hybrid composite (APAL: Aramid Patched Aluminum Alloy), consisting of a 2024-T3 aluminum alloy plate sandwiched between two aramid/epoxy laminate (HK 285/RS 1222), was developed. Fatigue crack growth behavior was examined at stress ratios of R=0.2, 0.5 using the aluminum alloy and two kinds of the APAL with different fiber orientation (0°/90° and 45° for crack direction). The APAL showed superior fatigue crack growth resistance, which may be attributed to the crack bridging effect imposed by the intact fibers in the crack wake. The magnitude of crack bridging was estimated quantitatively and determined by a new technique on basis of compliances of the 2024-T3 aluminum alloy and the APAL specimens. The crack growth rates of the APAL specimens were reduced significantly as comparison to the monolithic aluminum alloy and were not adequately correlated with the conventional stress intensity factor range(ΔK). It was found that the crack growth rate was successfully correlated with the effective stress intensity factor range (ΔK eff =K br -K ct ) allowing for the crack closure and the crack bridging. The relation between da/dN and theΔK eff was plotted within a narrow scatter band regardless of kind of stress ratio (R=0.2, 0.5) and material (2024-T3 aluminum alloy, APAL 0°/90° and APAL±45°). The result equation was as follow:da/dN=6.45×10−7(ΔK eff )2.4.  相似文献   

7.
In present study, as a basic step for modeling the fatigue behavior of an extruded Al alloy cylinder, the fatigue crack growth data of the alloy was collected in two orientations. Microstructural analysis revealed that the material had recrystallized grains and clusters of constituent particles aligned in the direction of extrusion. Fatigue life of the samples revealed a shorter fatigue life representing a higher fatigue crack growth rate in transverse direction. The Paris constants C and m were found to be 4 × 10−11 and 3.4 for the transverse orientation. The same constants were found to be 2 × 10−10 and 2.6 for the longitudinal direction. Post fracture analysis revealed that the topographical appearance of the fractured surfaces in two orientations was different. The mechanism of crack growth was the formation of striations. The present study revealed that the texture of the constituent particles created during extrusion process has a pronounced effect on the crack growth rate in two orientations. This paper was recommended for publication in revised form by Associate Editor Chongdu Cho Dr. M. A. Malik is a Professor in Department of Mechanical Engineering, College of Electrical and Mechanical Engineering, National University of Sciences and Technology, Rawalpindi, Pakistan. He graduated from Georgia Tech, USA with MS and PhD degrees in nuclear engineering. He has considerable working experience in nuclear research industry. He specializes in impurity transport and modeling and simulation techniques. His current research interests include structural analysis, reliability of materials and modeling and simulation of dynamic engineering systems. He has over 85 publications to his credit.  相似文献   

8.
The effects of aging on tensile properties and fatigue crack growth behaviors of NAS 254N stainless steel was studied. Yield strength and ultimate tensile strength of the aged specimens were almost the same as the as-received (as-rec.). The fracture strain, however, was decreased significantly by the aging, and the fracture surface of the aged at room temperature (RT) test was intergranular. As test temperature increased, yield strength, ultimate tensile strength and elongation decreased. And a type of serration was observed at 550-650°C As strain rate decreased, yield strength and ultimate tensile strength decreased, but elongation increased. It was observed that tensile strength and strain had a sudden change at one point. And this critical temperatureT cr was 550°C. The effect of aging time on the tensile strength and strain was also investigated. Tensile strength and strain decreased significantly beyond 100hrs. Fatigue crack growth rate at RT was enhanced by the aging at high stress intensity factor range. This is due to the occurrence of the intergranular fracture in the aged specimen. At 650°C, the fatigue crack growth behavior was almost the same without intergranular fracture.  相似文献   

9.
提出一种拟合金属材料疲劳裂纹扩展试验数据,并计算疲劳裂纹扩展速度的通用方法。该方法采用递增的三次多项式函数拟合疲劳试验数据,并采用平均加权方式计算各局部函数拟合的结果,提高了试验数据的拟合精度和疲劳裂纹扩展速度的准确性。通过在疲劳裂纹长度和扩展速度拟合结果的加权计算过程中引入delta函数,该通用方法能够有效地拟合常幅和存在过载载荷的疲劳裂纹扩展试验数据,并计算各试验点的裂纹扩展速度,同时保证了三次多项式拟合过程的连续性。通过多组常幅和存在过载载荷的疲劳试验数据拟合和现有方法及扩展有限元预测结果的对比分析,验证了该通用方法的有效性。  相似文献   

10.
The main objective of this study is to reveal the effect of dynamic strain ageing (DSA) on a ferritic stainless steel with detail relation to monotonic and cyclic responses over a wide range of temperatures. For assessing the effect of strain rate on mechanical properties, tensile test results are studied at two different strain rates of 2×10?3/s and 2×10?4/s. Typical responses of this material are compared with other alloy in literatures that exhibits DSA. Serrations in monotonic stress-strain curves and anomalous dependence of tensile properties with temperatures are attributed to the DSA effect. The low cycle fatigue curves exhibit prominent hardening and negative temperature dependence of half-life plastic strain amplitude in temperatures between 300°C–500°C which can be explained by DSA phenomenon. The regime for dependence of marked cyclic hardening lies within the DSA regime of anomalous dependence of flow stress and dynamic strain hardening stress with temperature and negative strain rate sensitivity regime of monotonic response. It is believed that shortened fatigue life observed in the intermediate temperature is mainly due to the adverse effect of DSA. An empirical life prediction model is addressed for as-received material to consider the effect of temperature on fatigue life. The numbers of load reversals obtained from experiment and predicted from fatigue parameter are compared and found to be in good agreement.  相似文献   

11.
Fatigue tests by axial loading (R-0.05) were carried out to investigate short fatigue crack growth behavior in 2 1/4 Cr-1 Mo steel at room temperature using smooth and a small notched flat specimen. All the data of the fatigue crack growth rate in the present tests were analyzed as a function of the stress intensity factor equation in conjunction with crack closure behavior. Analysis was performed accounting for the relation of surface effective stress range,Ua and depth effective stress range,Ub. In the case of isotropic crack growth properties,Ub=(ΔKta/ΔKtb) ·Ua. By use ofUb obtained from the analysis, crack growth rates to surface direction coincide with those of depth direction.  相似文献   

12.
Fatigue behavior of as-cast and extruded AZ61 magnesium alloys in ambient air (20 °C–55%RH) was investigated. It was found that size and distribution of cast defect influenced tensile and fatigue performance of the as-cast alloy. Fatigue limit of the as-cast alloy was significantly low compared to the extruded alloy. The casting defects served as stress concentration sites for fatigue crack nucleation. Fatigue tests were also carried out on a high Mn content alloy. All of the specimens failed from an inclusion near the specimen surface. Fatigue limit of Mg alloy with high Mn content was lower compared to that of the low Mn content alloy. Further, investigation on the effect of texture on fatigue and fatigue crack growth behavior of the extruded AZ61 magnesium alloy plate was carried out. The results showed that fatigue strength in the longitudinal direction to the extruded direction was higher compared to those in the transverse and 45° directions. Significant effect of specimen orientation on fatigue crack growth behavior for both short and long cracks was found near the threshold region. However, regardless of specimen orientation, the da/dN–ΔKeff curves for all three kinds of specimens were in a narrow band. It is suggested that the difference in the fatigue life among the specimen orientations will be mainly due to the difference in the crack closure behavior. A transition of fracture mechanism was found for a long crack. Slip fracture mechanism was dominant above the transition point, whereas below the transition point, slip fracture mechanism was associated with cleavage fracture.  相似文献   

13.
To accomplish long-term use of specific parts of steel, welding technology is widely applied. In this study, to compare the efficiency in improving mechanical properties, rolled steel (SS400) was welded with stainless steel (STS304) by both CO2 welding method and MIG (metal inert gas) welding method, respectively. Multi-tests were conducted on the welded specimen, such as X-ray irradiation, Vickers’ Hardness, tensile test, fatigue test and fatigue crack growth test. Based on the fatigue crack growth test performed by two different methods, the relationship of da/dN was analyzed. Although the hardness by the two methods was similar, tensile test and fatigue properties of MIG welded specimen are superior to CO2 welded one.  相似文献   

14.
The tensile, fracture toughness and fatigue properties of Al−Si 319 lost-foam-cast alloy were determined at room temperature. The fatigue properties of this alloy were also determined at 150°C. Fatigue cracks were always initiated at the largest casting pore. Initial pore sizes were measured using a scanning electron microscope. Surface replication showed that majority of the fatigue life was spent in fatigue crack propagation and permitted the estimation of the constants in the Paris power law and the threshold stress intensity factor (ΔK th ). The role of internal casting porosity was quantified using a linear elastic fracture mechanics (LEFM) model for fatigue crack growth. The predicted lives agreed with the measured values within a factor of two.  相似文献   

15.
To determine the regularity of fatigue crack propagation during cyclic loading with tensile overloads, a method of the estimation of the effective stress ratio of loading cycles, which is equivalent to the rate of crack propagation by the diagram of fatigue failure, is proposed. Thereby, the relation between the diagram of the fatigue failure and the phenomenon of crack retardation after tensile loads, which is complicated by its physical nature, is established. The experimental-computational studies were carried out on 20гΦЛ steel of a bogie bolster of a freight car.  相似文献   

16.
The study analyzed the behaviors of short and long crack as well as the effect of single tensile overload on the crack behaviors by using fatigue crack opening behavior. Crack opening stress is measured by an elastic compliance method which may precisely and continuously provide many data using strain gages during experiment. The unusual growth behaviors of short crack and crack after the single tensile overload applied, was explained by the variations of crack opening stress. In addition, fatigue crack growth rate was expressed as a linear form for short crack as for long crack by using effective stress intensity factor range as fracture mechanical parameter, which is based on crack closure concept. And investigation is performed with respect to the relation between plastic zone size formed at the crack tip and crack retardation, crack length and the number of cycles promoted or retarded, and the overload effect on the fatigue life.  相似文献   

17.
Effect of a fluorinated lubricant on the subcritical crack growth behavior of a Si3N4 ceramic was examined under cyclic loading condition. The fatigue lifetime of the specimens tested in the oil was shorter, particularly in the low stress regime, compared to that in air. The growth rate of the surface crack was measured in the oil and compared with that in humid air. Crack growth rate in the oil was twice that in the air. XPS analysis of the fatigue fracture surfaces revealed that F had reacted with yttria-containing grain boundary phase, while the fractographical examination indicated that the oil had caused the dissolution of the grain boundary phase. The dissolution was shown to reduce the extent of crack bridging behind the crack tip, resulting in a higher fatigue crack growth rate in the oil.  相似文献   

18.
Utilisation of hydrogen is expected to be one of the solutions against the problems of exhaustion of fossil fuels and reduction of carbon dioxide emissions. Evaluation of the materials for hydrogen utilisation machines is required. The objectives of this study are the characterisation of fretting fatigue strength of low‐alloy steel SCM435H and heat‐resistant steel SUH660, and the validation of effectiveness of nitriding in hydrogen gas environment. Fretting fatigue tests were conducted up to 3 × 107 cycles. The decrease of fretting fatigue strength in hydrogen gas environment was found at the long‐life region exceeding 107 cycles. The amount of the decrease of the fretting fatigue limit at 3 × 107 cycles was 11% for SCM435H and 15% for SUH660. However, at the stress level above the fretting fatigue limit in air, the finite life in hydrogen gas increased more than that in air. The cause of extension of fatigue life was the delay of start of stable crack propagation. Fretting fatigue crack, which was smaller than 200 µm in length, consumed approximately 60% of the fatigue life in hydrogen gas environment. Fretting fatigue crack was steadily propagated after the test was started in air. Observations of the fretted surface showed that the fretting wear process in hydrogen gas environment was dominated by adhesion. Tangential force coefficient was higher in hydrogen gas environment than that in air. It is considered that the adhesion has a close relation to crack initiation in hydrogen gas environment, and as a result, the failure of specimen occurred at a lower stress level comparing the fretting fatigue limit in air. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

19.
This paper investigates the microstructure and mechanical properties of 1420 aluminum–lithium (Al-Li) alloy joints before and after heat treatment by CO2 laser-metal inter gas (MIG) hybrid welding. The 5-mm-thick 1420 Al-Li alloy plates were welded by CO2 laser-MIG hybrid welding. Full penetration joints without any defects were produced. Optic and scanning electron microscopy were used to study the microstructure and fractograph characteristics. The results show that the microstructures of the heat-affected zone (HAZ) and fusion zone exist as a predominantly discontinuous equiaxed dendritic structure and as a fine cellular dendritic structure, respectively. After heat treatment, the microstructures change from dendritic structure to a spheroidal crystal; the grain size of fusion zone is obviously larger than that of the base metal and the HAZ. Furthermore, the hardness recovers substantially to a level similar to that of the parent material. The tensile strengths of the joints in the as-welded condition and after heat treatment are 223 and 267 MPa, reaching up to 57 and 68 % of the parent materials’ strength, respectively. The fractographs show that the joint as-welded condition exhibits the characteristics of dominated dimples and a small amount tear ridges, which are associated with the mixed ductile and brittle facture mechanisms. The fracture mode transforms from a transgranular to an intergranular after heat treatment; cleavage cracking coupled with an intergranular microvoid coalescence fracture mechanism occurs.  相似文献   

20.
随机超载下疲劳裂纹扩展的模拟计算   总被引:1,自引:0,他引:1  
邹小理 《机械强度》2004,26(6):680-682
采用蒙特卡罗法对随机超载作用下的疲劳裂纹扩展进行模拟计算。载荷谱为在基本循环载荷基础上加入一以泊松流发生的随机超载序列.超载的大小为均匀分布。相邻两次超载发生的时间间隔通过一系列相互独立、服从指数分布的随机数进行模拟。采用Wheeler模型考虑超载的迟滞效应,计算出每一载荷循环的裂纹扩展量。由此模拟出裂纹从初始长度一直到疲劳破坏的扩展曲线。通过大量样本的模拟计算,获得随机超载作用下疲劳裂纹扩展寿命的平均值与标准差。最后研究超载发生强度和大小对疲劳裂纹扩展寿命的影响。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号