首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 914 毫秒
1.
Titanium dioxide (TiO2) photocatalytic powder materials doped with various levels of manganese (Mn) were synthesized to be used as additives to wall painting in combating indoor and outdoor air pollution. The heterogeneous photocatalytic degradation of gaseous acetaldehyde (CH3CHO) on Mn-TiO2 surfaces under ultraviolet and visible (UV/Vis) irradiation was investigated, by employing the Photochemical Static Reactor coupled with Fourier-Transformed Infrared spectroscopy (PSR/FTIR) technique. Experiments were performed by exposing acetaldehyde (~ 400 Pa) and synthetic air mixtures (~ 1.01 × 105 Pa total pressure) on un-doped TiO2 and doped with various levels of Mn (0.1-33% mole percentage) under UV and visible irradiation at room temperature. Photoactivation was initiated using either UV or visible light sources with known emission spectra. Initially, the photo-activity of CH3CHO under the above light sources, and the physical adsorption of CH3CHO on Mn-TiO2 samples in the absence of light were determined prior to the photocatalytic experiments. The photocatalytic loss of CH3CHO on un-doped TiO2 and Mn-TiO2 samples in the absence and presence of UV or visible irradiation was measured over a long time period (≈ 60 min), to evaluate their relative photocatalytic activity. The gaseous photocatalytic end products were also determined using absorption FTIR spectroscopy. Carbon dioxide (CO2) was identified as the main photocatalysis product. It was found that 0.1% Mn-TiO2 samples resulted in the highest photocatalytic loss of CH3CHO under visible irradiation. This efficiency was drastically diminished at higher levels of Mn doping (1-33%). The CO2 yields were the highest for 0.1% Mn-TiO2 samples under UV irradiation, in agreement with the observed highest CH3CHO decomposition rates. It was demonstrated that low-level (0.1%) doping of TiO2 with Mn results in a significant increase of their photocatalytic activity in the visible range, compared to un-doped TiO2. This elevated activity is lost at high doping levels (1-33%). Finally, the photocatalytic degradation mechanism of CH3CHO on 0.1% Mn-TiO2 surfaces under visible irradiation leading to low CO2 yields is different than that under UV irradiation resulting to high CO2 yields.  相似文献   

2.
SnO2 photocatalyst was successfully synthesised by novel chemical route in hydrothermal environment and annealed at two different temperatures viz 550 and 600 °C, respectively. The crystal structure, optical properties, surface and bulk morphology have been characterised using various tools like X-ray diffraction (XRD), UV visible spectroscopy, Fourier transform infrared spectroscopy, transmission electron microscope (TEM) and scanning electron microscope (SEM). Cubic, spheres and porous like morphology of SnO2 photocatalyst was successfully confirmed using SEM micrographs and TEM. In addition to this the photocatalytic activity was evaluated towards the degradation of methylene blue dye solution. SnO2 photocatalyst annealed at 600 °C exhibits excellent photocatalytic efficiency which may be attributed to the unique morphology, high crystalline nature and charge separation. The photocatalyst efficiency was further tested towards the concentration of dye, catalyst dosage and pH of the dye. The involvement of ?OH in the photocatalytic reaction was evidenced using trapping experiment by employing different scavengers. The photocatalyst was moderately active, stable upto its fifth usage and stability of the photocatalyst before and after the photocatalytic reaction was also been studied using XRD and SEM.  相似文献   

3.
A visible-light-driven g-C3N4/g-C3N4 isotype heterojunction photocatalyst was synthesized by one-step thermal treatment using urea and thiourea as the precursor. The photocatalytic activity of as-prepared photocatalyst was evaluated through the degradation of rhodamine B (RhB) and tetracycline hydrochloride (TC) under the visible light irradiation. The hybrid showed enhanced photocatalytic activity in photodegradating the applied pollutants as compared with single g-C3N4. When the ratio of urea to thiourea was 2:1, the prepared isotype heterojunction exhibited the highest photocatalytic activity and the photodegradation rates for RhB and TC were 99.8% and 95.1% after being visible light irradiated for 1 h and 4 h respectively. The enhanced photocatalytic performance of the isotype heterojunction is ascribed to the enhanced charge separation efficiency. After being reused for 5 times, the hybrid still showed excellent recyclability and chemical stability. Furthermore, NaI, BQ and IPA were used as the sacrificial agents for studying the surface reactions in the photocatalytic process. The method used in this work provides a new pathway to achieve more efficient degradation of antibiotics and to stimulate further studies in this important field.  相似文献   

4.
Photocatalytic reduction of CO2 over a Cu2Se–graphene nanocatalyst has been investigated. The nanocomposite material was successfully prepared via a modified hydrothermal method. The structure and properties of the prepared composite were characterized by X-ray diffraction, scanning electron microscopy with energy dispersive X-ray microscopy, transmission electron microscopy, Raman spectroscopic analysis, and X-ray photoelectron spectroscopy. A synergetic effect of the combination of Cu2Se and graphene appeared in the form of excellent photocatalytic reduction capability of CO2. The photocatalytic efficiencies of the samples were characterized by testing for the photoreduction of CO2 to alcohol under visible light irradiation, which produced results such as to suggest that there is a significant potential for graphene-based semiconductor hybrid materials to be used as photocatalysts for reduction of CO2.  相似文献   

5.
Highly active photocatalytic Fe-doped nano TiO2 was successfully synthesised by chemical vapour deposition (CVD) method using FeCl3 as Fe source. CVD was carried out by evaporating FeCl3 at 350°C in nitrogen flow during 30–90?min. The amount of Fe incorporated into TiO2 framework is adjusted by the amount of FeCl3 used and the evaporation time. The obtained sample was characterised by X-ray diffraction (XRD), atomic absorption spectroscopy (AAS), energy dispersive X-ray spectroscopy (EDS), UV-Vis, Fourier transform-infrared (FT-IR) and X-ray photoelectron spectroscopy (XPS). Photocatalytic activities of the samples were tested in photocatalytic decomposition of 2-propanol in liquid phase using visible light instead of UV light irradiation. Non-doped TiO2 and high Fe loading TiO2 samples showed very low photocatalytic activity, whereas the low Fe loading TiO2 sample exhibited high photocatalytic activity under visible light. The high photocatalytic activity of this sample was rationalised by the existence of defects (Ti–OH groups) as the active sites.  相似文献   

6.
The development of an artificial photosynthetic system is a promising strategy to convert solar energy into chemical fuels. Here, a direct Z‐scheme CdS–WO3 photocatalyst without an electron mediator is fabricated by imitating natural photosynthesis of green plants. Photocatalytic activities of as‐prepared samples are evaluated on the basis of photocatalytic CO2 reduction to form CH4 under visible light irradiation. These Z‐scheme‐heterostructured samples show a higher photocatalytic CO2 reduction than single‐phase photocatalysts. An optimized CdS–WO3 heterostructure sample exhibits the highest CH4 production rate of 1.02 μmol h?1 g?1 with 5 mol% CdS content, which exceeds the rates observed in single‐phase WO3 and CdS samples for approximately 100 and ten times under the same reaction condition, respectively. The enhanced photocatalytic activity could be attributed to the formation of a hierarchical direct Z‐scheme CdS–WO3 photocatalyst, resulting in an efficient spatial separation of photo‐induced electron–hole pairs. Reduction and oxidation catalytic centers are maintained in two different regions to minimize undesirable back reactions of the photocatalytic products. The introduction of CdS can enhance CO2 molecule adsorption, thereby accelerating photocatalytic CO2 reduction to CH4. This study provides novel insights into the design and fabrication of high‐performance artificial Z‐scheme photocatalysts to perform photocatalytic CO2 reduction.  相似文献   

7.
A one-pot, solvent-thermal process was used to create the ultrafine ZnFe2O4 nanoparticles photocatalyst. During the solvent-thermal process, the in situ self-forming NaCl not only served as a “cage” to confine the ion diffusion, but also acted as a microreactor for nanocrystallite growth. An average particle size of ~10 nm and a high-specific surface area of ~112.9 m2/g were observed for the ultrafine ZnFe2O4 nanoparticles Owing to the synergistic effect of ultrafine particle size, the full utilization of the visible light region and high conduction band (CB) position, ultrafine ZnFe2O4 photocatalyst displayed an efficient photocatalytic CO2 reduction under visible light illumination. Besides, the ultrafine ZnFe2O4 photocatalyst showed high production selectivity for CH3CHO and C2H5OH generation in aqueous CO2/NaHCO3 solution. This work may provide a new idea for the synthesis of new high-efficiency photocatalysts.  相似文献   

8.
Interest in the photocatalytic oxidation of formaldehyde from contaminated wastewater is growing rapidly. The photocatalytic activity of the nanocrystalline Fe3+/F? co-doped TiO2–SiO2 composite film for the degradation of formaldehyde solution under visible light was discussed in this study. The films were characterised by field emission scanning electron microscopy (FE-SEM) equipped with energy-dispersive spectroscopy, X-ray diffraction (XRD), BET surface area, UV–Vis absorption spectroscopy, and photoluminescence spectroscopy. The FE-SEM results revealed that the Fe3+/F? co-doped TiO2–SiO2 film was composed of uniform round-like nanoparticles or aggregates with the size range of 5–10 nm. The XRD results indicated that only the anatase phase was observed in the film. Compared with a pure TiO2 film and a singly modified TiO2 film, the Fe3+/F? co-doped TiO2–SiO2 composite film showed the best photocatalytic properties due to its strong visible light adsorption and diminished electrons-holes recombination.  相似文献   

9.
The photocatalyst CaCO3/ZnO with high activity was prepared by coprecipitation method using (NH4)2CO3, Zn(NO3)2 and Ca(NO3)2 as raw materials. The photocatalyst was characterised by X-ray powder diffraction, terephthalic acid photoluminescence probing technique (TA-PL), UV–vis diffuse reflectance spectroscopy and the fluorescence emission spectra. The photocatalytic activity of the photocatalyst was evaluated by photocatalytic oxidation of methyl orange and rhodamine B. The results showed that the photocatalytic activity of the photocatalyst was much higher than that of pure ZnO. The best mole ratio of Ca/Zn in the sample was 1?:?2, and its intensity of TA-PL was the strongest. The effect of heat treatment condition on the photocatalytic activity of the photocatalyst was investigated. The best preparation condition was about 650°C for 7?h. Compared with pure ZnO, the photoabsorption wavelength range of the CaCO3/ZnO extends towards visible light and improves the utilisation of the total spectrum. The possible mechanisms of influence of CaCO3 on the photocatalytic activity of CaCO3/ZnO were also discussed.  相似文献   

10.
White colored N-doped TiO2 and a neat TiO2 powder were synthesized via sol–gel method. Prepared samples were characterized by means of x-ray diffractions, Brunauer–Emmet–Teller and Barrett–Joyner–Halenda methods, x-ray photoelectron spectroscopy, ultraviolet-visible analysis, scanning electron microscopy, and energy dispersive x-ray spectroscopy. Both of the N-doped TiO2 and neat TiO2 consisted of anatase phase of titania with mesoporous nature and according to XPS analysis prepared N-doped TiO2 is a substitutional nitrogen containing sample. The band gap of N-doped TiO2 and neat TiO2 were estimated from ultraviolet-visible spectroscopy data to be 2.7 and 3.2 eV, respectively. Prepared substitutional N-doped TiO2 featured steep light absorption edge with an approximately parallel characteristic of its absorption edge to that neat TiO2. This is due to its band-to-band visible light absorption ability. Synthesized N-doped TiO2 had a large surface area value of 193 m2/g and high photon absorption ability causing superior photocatalytic properties towards Congo red azo dye compared to neat TiO2 either under ultraviolet or visible light illumination.  相似文献   

11.
Zirconia and nitrogen-doped TiO2 powder was synthesized using a polymer complex solution method for the preparation of an enhanced visible light photocatalyst. The produced catalysts were characterized via the Brunauer, Emmett, and Teller method (BET), X-ray diffraction, transmission electron microscopy, X-ray photoelectron spectroscopy, Fourier transform infrared spectra, and UV–Vis spectrophotometry analyses. The N-doped TiO2/ZrO2 photocatalyst showed a high specific surface area and small crystal sizes. The XPS spectra of the N-doped TiO2/ZrO2 sample indicated that nitrogen was doped into the TiO2 lattice and enhanced the photocatalytic activity. The UV–Vis absorption spectra of the N-doped TiO2/ZrO2 sample noticeably shifted to the visible light region compared to that of the TiO2. The photocatalytic activities of the prepared catalysts were evaluated for the decomposition of gaseous NOx under UV and visible light irradiations. The photocatalytic activities of N-doped TiO2/ZrO2 were much greater than those of commercial Degussa P25 in both the UV and visible light regions. The high photocatalytic activity can be attributed to stronger absorption in the visible light region, a greater specific surface area, smaller crystal sizes, more surface OH groups, and to the effect of N-doping, which resulted in a lower band gap energy.  相似文献   

12.
Jing Yang 《Thin solid films》2008,516(8):1736-1742
To use solar irradiation or interior lighting efficiently, we sought a photocatalyst with high reactivity under visible light. Nitrogen and carbon doping TiO2 films were obtained by heating a TiO2 gel in an ionized N2 gas. The as-synthesized TiO2−xyNxCy films have shown an improvement over titanium dioxide in optical absorption and photocatalytic activity such as photodegradation of methyl orange under visible light. The process of the oxygen atom substituted by nitrogen and carbon was discussed. Oxygen vacancy induced by the formation of Ti3+ species and nitrogen and carbon doped into substitution sites of TiO2 have been proven to be indispensable for the enhance of photocatalytic activity, as assessed by UV-Vis Spectroscopy and X-ray photoemission spectroscopy.  相似文献   

13.
The present study describes fabrication and electrochemical classification of one-dimensional CeO2-Cu2O nanofibers for photocatalysis and supercapacitor application. The utilized CeO2-Cu2O composite was prepared by sol–gel electrospinning method using Polyvinylpyrrolidone (PVP), Ce(NO3)3?6H2O and Cu(CH3COO)2 as precursors. The physicochemical properties of the synthesized samples were characterized using special characterization approaches such as X-ray diffractometer (XRD), energy dispersive X-ray analysis (EDX), electron probe microanalysis (EPMA) and scanning electron microscopy (SEM). As compared to pristine CeO2, the UV–vis spectrum of CeO2-Cu2O composite exhibited the absorption peak which shifted to higher wavelength. The photocatalytic activity results indicated the substantial degradation of MB dye by ~92% over the surface of CeO2-Cu2O nanocomposite catalyst under visible light illumination. The CeO2-Cu2O composite possessed higher photocatalytic activity and electrochemical capacitance than the pristine samples as supercapacitor electrode materials. The CeO2-Cu2O composite exhibits a specific capacitance of 329.64 F g?1 at 5 mV s?1, which is higher than that of the pristine CeO2 (192.5 F g?1) nanofibers. These results suggest the applicability of fabricated composite nanofibers as visible light active photocatalyst and as electrode material for supercapacitors.  相似文献   

14.
The photocatalytic oxidation of the azo dye Orange-II (Or-II) using Fe loaded TiO2 (Fe–TiO2) was studied under ultraviolet (UV), visible (vis) and simultaneous UV–vis irradiations using a solar light simulator. Photocatalysts were characterized by means of XRD, SEM-EDX, FTIR and DRS. Fe3+ species, identified in XPS analyses, were responsible of the increased absorption of visible light. Moreover, DRS analyses showed a decrease in the bandgap due to Fe3+ loading. Photocatalystic tests proved that Fe modification enhanced the TiO2 photocatalytic activity towards Or-II photodegradation under simultaneous UV–vis irradiation. Even so, the performance of the Fe–TiO2 samples towards the photodegradation of phenol, under UV irradiation, was lower than TiO2 suggesting the recombination of the UV photogenerated electron–hole pair. Therefore, results evidence a Fe3+ promotion of the electron caption in the photosensitization process of TiO2 by Or-II acting as a sensitizer. Such process leads to the Or-II photooxidation under UV–vis irradiation by losing energy in electron transferring processes to sensitize TiO2, and, the formation of reactive oxygen species promoted by the injected electron to the TiO2 conduction band.  相似文献   

15.
Metal deposition with photocatalyst is a promising way to surmount the restriction of fast e?/h+ recombination to improve the photocatalytic performance. However, the improvement remains limited by the existing strategies adopted for depositing metal particles due to the serious aggregation and large unconnected area on photocatalyst surface. Here, a strategy is proposed by directly grafting hypercrosslinked polymers (HCPs) on TiO2 surface to construct Pd-HCPs-TiO2 composite with uniform dispersion of ultrafine Pd nanoparticles on HCPs surface. This composite with surface area of 373 m2 g?1 exhibits improved photocatalytic CO2 conversion efficiency to CH4 with an evolution rate of 237.4 µmol g?1 h?1 and selectivity of more than 99.9%. The enhancement can be ascribed to the grafted porous HCPs with high surface area and N heteroatom on TiO2 surface for the stabilization of Pd nanoparticles, favoring the electron transfer and CO2 adsorption for selective CH4 production. This strategy may hold the promise for design and construction of porous organic polymer with semiconductor for efficient photocatalytic conversion.  相似文献   

16.
Nanocrystalline BiCu2VO6 was successfully synthesized by a facile polymeric citrate complex method. The samples were characterized by X-ray diffraction (XRD) analyses, scanning electron microscopy (SEM), transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HRTEM), UV-vis diffuse reflectance spectra (DRS), thermogravimetric analyses (TG) and differential thermal analyses (DTA). BiCu2VO6 showed photocatalytic activity for the degradation of RhB under visible light irradiations with the coexistence of H2O2. As compared to BiCu2VO6 prepared via a solid state reaction, BiCu2VO6 prepared via a polymeric citrate complex method showed higher photocatalytic activity. The visible light photocatalytic activity of BiCu2VO6 was also proposed.  相似文献   

17.
18.
Here, the photocatalytic CO2 reduction reaction (CO2RR) with the selectivity of carbon products up to 100% is realized by completely suppressing the H2 evolution reaction under visible light (λ > 420 nm) irradiation. To target this, plasmonic Au/CdSe dumbbell nanorods enhance light harvesting and produce a plasmon‐enhanced charge‐rich environment; peripheral Cu2O provides rich active sites for CO2 reduction and suppresses the hydrogen generation to improve the selectivity of carbon products. The middle CdSe serves as a bridge to transfer the photocharges. Based on synthesizing these Au/CdSe–Cu2O hierarchical nanostructures (HNSs), efficient photoinduced electron/hole (e?/h+) separation and 100% of CO selectivity can be realized. Also, the 2e?/2H+ products of CO can be further enhanced and hydrogenated to effectively complete 8e?/8H+ reduction of CO2 to methane (CH4), where a sufficient CO concentration and the proton provided by H2O reduction are indispensable. Under the optimum condition, the Au/CdSe–Cu2O HNSs display high photocatalytic activity and stability, where the stable gas generation rates are 254 and 123 µmol g?1 h?1 for CO and CH4 over a 60 h period.  相似文献   

19.
Three mixed-phase TiO2 powders, containing ~80 volume % anatase and ~20 volume % rutile, were prepared from amorphous titanium hydroxide and three different salt matrices—pure sodium chloride, pure Na2CO3, and pure disodium hydrogen phosphate (DSP). Amorphous titanium hydroxide and salt mixtures were heat treated at 875°C in a rapid thermal annealing system for different times, according to the time–temperature phase transformation graphs. Time-dependent UV degradation of aqueous solutions of methylene blue dye (15 ppm) in the presence of mixed-phase powders was used to monitor the activity of the catalysts. Microstructural study of the powders by scanning electron microscope and transmission electron microscope combined with phase analysis by XRD and optical absorbance by UV-absorption spectroscopy indicated that the higher photocatalytic activity of the powder obtained from pure DSP salt could be explained by its smaller rutile particle size and anatase–rutile interparticle bonding.  相似文献   

20.
The use of TiO2 as photocatalyst to degrade the organic compounds is an effective method of oxidation process and has been widely studied in environmental engineering. However, TiO2 absorbed the UV light which is only small part of sunlight reaching earth surface to activate photocatalytic procedure effectively is a major disadvantage. Therefore, studies on the development of new TiO2 wherein its photocatalytic activity can be activated by visible light which is the major part of sunlight will be valuable for field application. In this study, we evaluate the photocatalytic degrading efficiency of porphyrins/TiO2 complexes on the organic pollutants under irradiation with visible light (λ = 419 nm). The results showed that the photodecomposition efficiency of 2,4-dichlorophenol (2,4-DCP) wastewater by using porphyrin/TiO2 irradiated under visible light for 4 h was up to 42-81% at pH 10. These evidences reveal that the system of porphyrin/TiO2 complexes has also significantly efficiency of photocatalytic degradation for some hazardous or recalcitrant pollutants under visible light irradiation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号