首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
The pyrolysis of different plastic waste types such as low density polyethylene (LDPE), high density polyethylene (HDPE), polypropylene (PP), polyethylene terephthalate (PET) and polystyrene (PS) for producing multi-walled carbon nanotubes (MWCNTs) using a two-stage process has been investigated. Firstly, the cracking of plastic wastes was carried out at a temperature of 700°C to produce hydrocarbon gases. In the second stage, the produced hydrocarbon gases were decomposed at 650°C on the surface of the Ni-Mo/Al2O3 catalyst to form CNTs. Various analytical tools such as XRD, TPR, TGA, Raman spectroscopy and TEM were used to describe both the fresh catalyst and the obtained CNTs. The results showed that the amount of the hydrocarbon gases was related to the type of plastic waste and hence the CNT yield. Accordingly, LDPE or PP was decomposed to produce the largest gases yield of 72.5 or 70.7 wt%, respectively. As a result, a large CNTs yield of 5.8 and 5 g/gcat can be achieved by pyrolysis of PP and LDPE waste, respectively. However, a small yield of CNTs with little quality and low purity was obtained by using PS or PET waste as the carbon feedstock.  相似文献   

2.
Abstract

Carbon nanotubes (CNTs) are attracting great interest in enhancing rheological behavior and thermal performance of lubricating grease. In this study, CNTs were synthesized by catalytic chemical vapor deposition (CCVD) method using low-density polyethylene (LDPE) waste as a cheap carbon source and Co/MgO as an effective catalyst. The effect of temperature on the catalytic pyrolysis of LDPE to produce CNTs has been studied. Catalytic pyrolysis of LDPE waste was conducted in a temperature range of 350–600?°C using the H-ZSM-5 catalyst. The structure and quality of CNTs were fully characterized using HR-TEM, XRD, and Raman spectroscopy. On the other hand, various concentrations of CNTs (0.2, 0.4, 0.6, 0.8, and 1.0?wt%) were mixed with pure lithium grease to determine the optimum percentage that improves the properties of nano-grease. The results showed that a high yield of multiwalled carbon nanotubes (MWCNTs) was obtained with high quality at temperatures ranging from 400 to 550?°C. Also, the addition of CNTs enhanced the rheological behavior of lithium grease, and the optimum percentage of CNTs was 0.8?wt%. Furthermore, the apparent viscosity and shear stress of lithium nano-grease increased by increasing the concentration of CNTs up to 0.8%. At this concentration, the penetration value of lithium nano-grease was greater than pure grease, and the dropping point increased by 12.5%. These results suggested that CNTs prepared from LDPE waste were an excellent additive to enhance the physicochemical properties of lithium grease.  相似文献   

3.
Catalytic thermal decomposition of natural gas to CO/CO2-free hydrogen production was studied over cobalt catalysts supported on Al2O3, MgO, and SiO2. The physico-chemical properties of the fresh catalysts were investigated by X-ray diffraction (XRD), temperature-programmed reduction (TPR), and surface area. In addition, the morphological structure of as-deposited carbon over the spent catalysts was characterized by transmission electron microscope (TEM), Raman spectroscopy, thermogravimetric analysis, and XRD. The obtained results proved that the catalytic activity and longevity of the cobalt-based catalysts strongly depended on the nature of the applied support. Among the catalysts tested, the Co/Al2O3 catalyst exhibited the highest activity and stability due to the higher dispersion and stabilization of cobalt particles because of formation of CoAl2O3 spinel phase. The lower activity of Co/SiO2 catalyst is mainly attributed to the aggregation of cobalt metal particles because of weak metal–support interaction. It was observed that both type and morphological structure of deposited carbon were strictly depended on the nature of the support. TEM images revealed that multi-walled carbon nanotubes were produced over Al2O3- and MgO-supported catalysts, whereas both carbon nanofibers and amorphous carbon were formed over the Co/SiO2 catalyst.  相似文献   

4.
In a typical chemical vapour deposition (CVD) process for synthesizing carbon nanotubes (CNTs), it was found that the aromatization catalysts could promote effectively the formation of CNT. The essence of this phenomenon was attributed to the fact that the aromatization catalyst can accelerate the dehydrogenation–cyclization and condensation reaction of carbon source, which belongs to a necessary step in the formation of CNTs. In this work, aromatization catalysts, H-beta zeolite, HZSM-5 zeolite and organically modified montmorillonite (OMMT) were chosen to investigate their effects on the formation of multi-walled carbon nanotubes (MWCNTs) via pyrolysis method when polypropylene and 1-hexene as carbon source and Ni2O3 as the charring catalyst. The results demonstrated that the combination of those aromatization catalysts with nickel catalyst can effectively improve the formation of MWCNTs.  相似文献   

5.
Carbon nanotubes (CNTs) as well‐known nanomaterials are extensively studied and widely applied in various fields. Nitric acid (HNO3) is often used to treat CNTs for purification purposes and preparing oxidized CNTs for various applications. However, too little attention is paid to investigating the effect of HNO3 treatment on the optical properties of CNTs. In this work, it is observed for the first time that HNO3‐oxidized multiwalled carbon nanotubes (ox‐MWCNTs) have strong electrochemiluminescence (ECL) activity, which enables ox‐MWCNTs to become new and good ECL carbon nanomaterials after carbon quantum dots (CQDs) and graphene quantum dots (GQDs). Various characterization technologies, such as transmission electron microscope (TEM), X‐ray photoelectron spectroscopy (XPS), and Raman spectroscopy, are used to reveal the relationship between ECL activity and surface states. The ECL behaviors of ox‐MWCNTs are investigated in detail and a possible ECL mechanism is proposed. Finally, the new ECL nanomaterials of ox‐MWCNTs are envisioned to have promising applications in sensitive ECL sensing and in the study of CNT‐based catalysts.  相似文献   

6.
To date, focus of the research activities in nanoscience was to control the chemical vapor deposition (CVD) growth of carbon nanotubes (CNTs) by changing the precursor pressure and process temperature. The effect of the precursor flow rate and process time on CNTs growth parameters has been overlooked in past studies and therefore is very little known. This study was focused on the optimization of the ethylene flow rate and CVD process time for CNTs growth over Fe2O3/Al2O3 catalyst in a fluidized bed chemical vapor deposition (FBCVD) reactor, operating at atmospheric pressure. Argon and hydrogen were considered as the carrier and supporting gases, respectively. Transmission electron microscope (TEM) and Scanning Electron Microscopy (SEM) were used to investigate the surface morphology, nanostructures, purity and yield of the grown CNTs. In-depth analysis revealed an increase in tube length, yield and the carbon concentration with ethylene flow rate in the range of 50–110 sccm. However, an inverse relationship between flow rate and tube diameter distribution was predicted in the given work. The most favorable results were obtained at an ethylene flow rate of 100 sccm and a CVD process time of 60 minutes. The dense and homogeneous growth of relatively pure nanotubes of increased tube length and narrow diameter distribution, in the range of 20–25 nm, was observed at optimized flow rate and process time.  相似文献   

7.
Yong Liu 《Materials Letters》2009,63(28):2526-2528
Magnetic monodisperse ferrite MFe2O4 (M = Fe, Co, Ni) nanoparticles have been successfully deposited on carbon nanotubes (CNTs) by in situ high-temperature hydrolysis and inorganic polymerization of metal salts and CNTs in polyol solution. X-ray diffraction (XRD), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), energy-dispersive X-ray spectrometry (EDS) and vibrating sample magnetometer (VSM) investigations were used to characterize the final products. The influencing factors for formation of CoFe2O4 nanoparticles along CNTs have also been discussed briefly. The main advantage of this synthetic strategy is that it is beneficial for the fabrication of magnetic CNTs with a compact layer of nanoparticles and could be extended to prepare series of ferrite/CNTs nanocomposites via the substitution of metal cations.  相似文献   

8.
Abstract

In this study, Fe–MgO catalyst substrates with various Fe and MgO combinations were evaluated for the growth of different types of carbon nanostructure materials (CNMs), particularly graphene nanoplatelets (GNPs) and carbon nanotubes (CNTs) via chemical vapor deposition using methane as a carbon source. The hydrogen yield was also determined as a valuable by-product in this process. Therefore, a set of Fe–MgO catalysts with different iron loadings (30, 80, 85, 90 and 100?wt %) were prepared by the combustion method to realize this target. The physicochemical properties of freshly calcined Fe–MgO catalysts were investigated by XRD, TPR and BET, while the as-grown CNMs were studied by HR-TEM, XRD and Raman spectroscopy. The results verified that the morphology of as-grown CNMs as well as the H2 yield was directly correlated to the iron content in the catalyst composition. The XRD and TPR results showed that various FeMgOx species with deferent levels of interactions were produced with the gradual incorporation of MgO content. TEM images indicated that GNPs were individually grown on the surface of high loaded iron-containing catalysts (90–100?wt %) due to the presence of highly aggregated iron particles. While multi-walled carbon nanotubes (MWCNTs) with uniform diameters were grown on the low iron-loaded catalyst (30%Fe/MgO) due to the formation of highly dispersed FeMgOx particles. On the other hand, GNPs/MWCNTs hybrid materials were grown on the surface of 80%Fe and 85%Fe/MgO catalysts. This behavior can be interpreted by the co-existence of highly aggregated and highly dispersed Fe2O3 particles in the catalyst matrix. The results demonstrated that the catalyst composition has a notable effect on the nature of CNMs products and H2 yield.  相似文献   

9.
In this article, we report the synthesis of ultra-long carbon nanotubes (CNTs) by thermal chemical vapour deposition method. Ultra-long, individual and aligned CNTs were directly grown on a flat silicon substrate. The orientation of the nanotubes was found parallel to the gas flow direction. The ultra-long CNTs were grown with different transition metallic salts, such as nickel chloride, iron (III) chloride, cobalt acetate and ruthenium acetate, as the catalysts. The influence of the growth conditions, such as growth temperature, reactive gas flow on the length and alignment of the CNTs was studied in detail. By using different catalysts, ultra-long single-walled carbon nanotubes (SWCNTs) or multi-walled carbon nanotubes (MWCNTs) were successfully grown. These ultra-long CNTs were transferred to other substrates by two methods. (1) The first method is to use polydimethylsiloxane as a stamp. (2) The second method is to use KOH as an etching agent. The diameter and length of the CNTs were characterised by transmission electron microscope, scanning electron microscope, atomic force microscope and Raman spectroscopy. The results indicate that the length of the CNTs can reach up to 4?mm. The diameter of the SWCNTs is in the range of 0.7–2.1?nm and the diameter of the MWCNTs is approximately 150?nm.  相似文献   

10.
Abstract

A novel approach for synthesizing carbon nanotubes (CNTs) via chemical vapor deposition (CVD) technique has been elucidated. CNTs are catalytically grown on the CoFe2O4-MgO nano-catalyst at various growth temperatures (700?°C, 800?°C, 900?°C) to clarify the effect of temperature and to achieve the optimum CNT growth temperature. The structural properties of the catalyst and CNTs were studied with thermal analysis (TGA), X-ray diffraction (XRD), FTIR spectroscopy (IR), Raman spectroscopy, and High Resolution Transmission Electron Microscope (HRTEM). X-ray diffraction is used to study changes in the crystal structure of the CoFe2O4+MgO nano-catalyst. The obtained data ratifies the formation of MWCNTs over the nanocatalyst. The intensity of the main peak of CNTs decreases as well as the yield with increasing the growth temperature. The two main Raman modes, G band and the D band, can be identified in the spectra multi-walled carbon nanotubes .The lowest ID/IG ratio is obtained at the highest growth temperature. HRTEM images show that the growth temperature has a significant parameter on CNT quality. The average diameters of grown CNTs are 42, 32 and 16?nm for growth temperatures of 700 ?C, 800 ?C and 900 ?C, respectively. The inner and outer diameters of MWCNTs become thinner and the quality of the tubes is enhanced with increasing the growth temperature. Additionally, it can be concluded from the temperature study that the balance between decomposition of acetylene gas and diffusion rate of manufactured carbon atoms in CoFe2O4-MgO catalyst nanoparticles occurs at the optimal growth temperature of 900?°C.  相似文献   

11.
Abstract

Supported Co-Mo catalysts with a given ratio of metals were prepared from polyoxomolybdate Mo12O282-OH)12{Со(H2O)3}4 using impregnation and combustion methods. Effects of the type of catalyst and the ratio and flow of methane and hydrogen gases on the structure of carbon nanotubes (CNTs) synthesized by catalytic chemical vapor deposition (CCVD) method were studied using transmission electron microscopy and Raman spectroscopy. The catalyst prepared by combustion method yielded mainly individualized CNTs, while the CNTs were highly entangled or bundled when impregnation method was used. In both cases, addition of hydrogen to methane led to reduction of the CNT yield. The samples synthesized using two different catalysts and the same CH4/H2 ratio and flow of gases were tested in electrochemical capacitors. A higher specific surface area of the CNTs grown over impregnation-prepared catalyst caused a better performance at scan rates from 2 to 1000?mV/s.  相似文献   

12.
Jing Zhang 《Materials Letters》2007,61(17):3571-3574
Sodium dodecyl sulfate (SDS) as a useful dispersing agent for pristine and purified multiwall carbon nanotubes (MWCNTs) to prepare MWCNTs-modified electrodes is described. The morphology of different MWCNTs is characterized by Transmission Electron Microscopy (TEM). Voltammetric responses at MWCNTs-SDS modified glassy carbon electrodes towards detecting H2O2 are observed to compare the electrochemical action of MWCNTs in different circumstances. The best electrochemical action of pristine MWCNTs toward H2O2 is at about 0.4 wt.% MWCNTs dispersed in 2 wt.% SDS aqueous solution modified electrode. The pristine and purified MWCNTs-SDS films display different electrochemical behaviors. In contrast to the properties of MWCNTs dispersed in distilled water, we conclude that SDS is helpful for the dispersion and the electrochemical action of pristine and purified MWCNTs.  相似文献   

13.
Single-walled carbon nanotubes (SWNTs) have been synthesized by catalytic decomposition of eucalyptus oil, on a high silica-zeolite support impregnated with Fe/Co catalyst at 850 °C by the spray pyrolysis method. Catalyst with 5 wt.% (molar ratio of Co:Fe = 1:1), impregnated in zeolite was suitable for effective formation of carbon nanotubes (CNTs). As-grown CNTs were characterized by SEM, TEM and Raman spectroscopy. Raman spectroscopy reveals that as-grown CNTs are well graphitized. Raman spectroscopy also reveals that the as-prepared SWNTs have a diameter of about 0.79-1.71 nm.  相似文献   

14.
Multiwall carbon nanotubes (MWCNTs) were grown by dielectric barrier discharge (DBD)-type plasma enhanced chemical vapor deposition (PECVD) method in downstream. The temperature was 973 K and the compositions of gases were methane, hydrogen and oxygen in the total pressure of 0.05 MPa. The effect of O2 concentration in the mixture on the configuration of carbon nanotubes (CNTs) was investigated in detail. Results from scanning electron microscope (SEM) and transmission electron microscope (TEM) showed that CNTs grown in CH4/H2 (38.6%/61.4%, volume) mixture have many defects and contained disordered graphitic materials. With the addition of appropriate amount of O2 (∼0.67%), high-purity CNTs could be obtained. However, no CNT, even no carbon matrix existed under the condition of an excessive oxygen concentration (>1.0%, volume) in the mixture. In order to understand the role of O2 during CNTs growth, optical emission spectroscopy (OES) was in-situ employed and the results predicted that the improvement of CNTs quality in O2 addition was attributed to the effect of OH oxidation from the reaction of atomic oxygen with hydrogen in the plasma.  相似文献   

15.
Carbon nanotubes (CNTs)/Cu2O-CuO composite powder was fabricated by a spray pyrolysis (SP) method. The copper acetate monohydrate (Cu(CH3COO)2·H2O) solution within CNTs dispersion was used as a precursor. The influences of decomposition temperatures, concentration of Cu(CH3COO)2 solutions and CNTs mass fractions on the constituent phases and microstructures of the composite powder were investigated by XRD, FESEM, TEM, UV–Vis analysis methods. The results show that the composite powder prepared at 500?°C, with the concentration of 1.0?g/l Cu(CH3COO)2·H2O and 30.0?wt.% CNTs mass fraction, has the best photocatalytic performance due to the numerous particles precipitated on the CNTs surface and lower recombination rate of the photogenerated electron-hole pairs. Furthermore, tentative mechanisms of the nucleation-growth and photodegradation properties were explored based on the microstructure and photocatalytic analysis.  相似文献   

16.
The lamellar Fe/Al2O3 catalysts were prepared by sol-gel method, and then with these prepared catalysts, carbon nanotubes (CNTs) were synthesized by catalytic chemical vapor deposition (CCVD) method using C2H2 as precursor. The as-prepared CNTs and Fe/Al2O3 catalysts were characterized by X-ray diffraction, field emission scanning electron microscopy, transmission electron microscopy, high-resolution transmission electron microscopy and Raman spectrum. The results proved that the as-prepared CNTs actually existed in bundles. And the growth of CNTs bundles should be attributed to the lamellar catalysts, which supported the bottom growth mechanism of CNTs. The transition metal of Mo was not introduced in catalysts to produce CNTs bundles, which was different with others’ results.  相似文献   

17.
Carbon nanotubes (CNTs) were synthesized on ball-milled Fe2O3 coated copper sheets by the catalytic decomposition of ethanol vapor at 650°C. TEM, SEM, and EDX revealed the presence of 30–50 nm diameter multiwalled carbon nanotubes with catalytic particles at their tips. CNTs, α-Fe, and Fe3C were detected by XRD. Raman and TG analyses show that the product is CNTs with less than 10 wt % residues. The carbon yield was the maximum at 354 wt %. The text was submitted by the authors in English.  相似文献   

18.
The influence of catalytic and operational parameters on the rate of growth and quality of carbon nanotubes has been investigated. A series of Fe2O3/Al2O3 catalysts prepared by different methods were investigated under conditions of synthesis of CNTs via the process of CVD of ethylene. Deposition experiments were carried out in a thermogravimetric hot-wall reactor, which enables continuous monitoring of the evolution of carbon mass with time. Controlled explosive burning (CEB) of precursor compounds was found to be the most effective method of preparation of the catalyst with respect to rate of deposition and yield of CNTs. This result has been attributed to the presence of hematite particles of small diameter on the catalyst. The presence of hydrogen in the gas feed mixture, even at small concentration, proved to be beneficial for the rate of production of MWCNTs and to result in the synthesis of CNTs of narrower diameter distribution. Yield and quality of MWCNTs depend on the concentration of the carbon source (ethylene) in the feed mixture and on temperature of deposition. Under the present experimental conditions, the optimal reaction temperature was found to be 650 °C. The products of the deposition were characterized using scanning electron microscopy and Raman spectroscopy.  相似文献   

19.
Hydrogen production via methane decomposition has attracted great attention as a source of clean energy. In this work, the catalytic decomposition of undiluted methane into COx-free hydrogen and carbon nanomaterial over ZrO2–M (M?=?MgO, Al2O3, SiO2, La2O3 and CeO2) binary oxides supported Co catalysts was studied. The fresh and spent catalysts were characterized by XRD, H2-TPR, N2 adsorption–desorption, TEM and Raman spectroscopy. The results revealed that the incorporation of secondary oxide to ZrO2 support played a vital role in the activity and stability of cobalt metal. The activity results illustrated that Co/Zr–Mg exhibited better activity in terms of hydrogen yield compared with the other Zr–M supported catalysts. This is ascribed to the moderate cobalt oxide-support interaction and forming CoMgOx species which enhance the Co3O4 dispersion and prevent its aggregation on the catalyst surface. On the other hand, the Co/Zr–Si catalyst showed the lowest activity due to the agglomeration of Co3O4 on the surface of the SiO2 support. High-resolution TEM images illustrated that almost the deposited carbon on the surface of spent catalysts was in the form of multi-walled carbon nanotubes.  相似文献   

20.
The aim of this work is to examine the properties of CNTs formed on Fe-Co and Ni-Co bimetallic catalysts supported on different phases of TiO2 (anatase and rutile) by wet impregnation method. The CNTs are grown from decomposition of acetylene via Thermal CVD at 700°C using the prepared catalysts. The nanomaterials were characterized by XRD, Xmap, BET, FESEM, TEM, and Raman spectroscopy. It was found that the catalyst samples supported on rutile TiO2 have higher specific surface area, smaller catalytic nanoparticles with denser distribution and very more activity compared to anatase ones. Consequently, the CNTs nucleated from nanoparticles supported on rutile TiO2 possess higher density, smaller average diameters and narrower diameter distribution compared to grown CNTs on anatase samples. Moreover, it was observed that the Fe-Co bimetallic catalysts regardless of TiO2 support phase, possesses more catalytic activity and higher average growth rate of CNTs in compare with Ni-Co catalysts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号