首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
A multiplex PCR assay was developed by targeting ‘16S rRNA’ and ‘hly’ genes for detection of Listeria or Listeria monocytogenes in dairy foods on the basis of amplification of 1200 and 713 bp products, respectively. The assay conditions were optimized to make it truly rapid and to cut down the cost. The authenticity of the multiplex PCR was ascertained by using Nested PCR targeted against internal region of ‘hly’ gene that produced an amplified product of 188 bp. The multiplex PCR assay was found to be specific for detection of L. monocytogenes only since none of the non-listerial cultures gave positive signal. The sensitivity of the multiplex PCR was limited to 10 ng pure DNA and 1–10 cells of L. monocytogenes after 4–6 h enrichment in Listeria enrichment broth. When applied to 20 raw milk and 10 pasteurized milk samples, L. monocytogenes could not be detected in any of the samples by the multiplex PCR assay. This assay could find potential application in dairy industry for monitoring dairy foods for this high risk food pathogen on routine basis.  相似文献   

2.
Camembert-type cheese was produced from: raw bovine milk; raw milk inoculated with 2 or 4 log CFU/ml Listeria monocytogenes; raw milk inoculated with L. monocytogenes and subsequently pressure-treated at 500 MPa for 10 min at 20 °C; or uninoculated raw milk pressure-treated under these conditions. Cheeses produced from both pressure-treated milk and untreated milk had the typical composition, appearance and aroma of Camembert. Curd and cheese made from inoculated, untreated milk contained large numbers of L. monocytogenes throughout production. An initial inoculum of 1.95 log CFU/ml in milk increased to 4.52 log CFU/g in the curd and remained at a high level during ripening, with 3.85 log CFU/g in the final cheese. Pressure treatment inactivated L. monocytogenes in the raw milk at both inoculum levels and the pathogen was not detected in any of the final cheeses produced from pressure-treated milk. Therefore high pressure may be useful to inactivate L. monocytogenes in raw milk that is to be used for the production of soft, mould-ripened cheese.

Industrial relevance

This paper demonstrates the potential of high pressure (HP) for treatment of raw milk to be used in the manufacture of soft cheeses. HP treatment significantly reduced the level of Listeria monocytogenes in the raw milk and so allowed the production of safer non-thermally processed camembert-like soft cheese.  相似文献   

3.
This study investigated the behaviour and fate of Listeria monocytogenes at different ripening temperatures and NaCl concentrations in traditional Lighvan cheese. L. monocytogenes was added to raw sheep's milk. After producing the cheese, they were stored in 8%, 12% and 15% NaCl at 4, 9 and 14 °C. Sampling was performed for 150 days. Different temperature and NaCl concentrations had a significant effect on the survival of L. monocytogenes (< 0.001). The lowest growth and survival rates of L. monocytogenes were in 15% NaCl at 14 °C and 12% NaCl at 14 °C, respectively. Also, the highest growth and survival rates of the bacterium were in 8% NaCl at 4 °C.  相似文献   

4.
Syto9 and probe‐based multiplex real‐time PCR assays for simultaneous detection of a group of foodborne pathogens (named SYLC group), targeting Salmonella spp. (invA gene), Yersinia enterocolitica (ystA gene), Listeria monocytogenes (hly gene) and Campylobacter spp. (rrna gene), have been developed. The Syto9 assay generates amplicon DNA melting curve with four peaks of 86.5 ± 0.5, 84 ± 0.5, 81.5 ± 0.5 and 90.5 ± 0.5 °C corresponding Salmonella spp., Y. enterocolitica, L. monocytogenes and Campylobacter spp. targets, respectively. The sensitivities of the Syto9 and TaqMan assays in artificially inoculated chicken wing rinses were in a range of 3.2 × 102 to 3.1 × 104 and 9.8 × 102 to 1.9 × 104 colony‐forming units per millilitre, respectively, depending on the pathogen. All tested target strains (n = 100) were correctly detected by the both assays, whereas nontarget strains (n = 100) demonstrated no cross‐reactivity representing 100% specificity. The assays are suitable for application in qualitative and quantitative detection of SYLC group pathogens in food matrices.  相似文献   

5.
Listeria monocytogenes is a foodborne pathogen that can cause serious invasive disease in humans. Because human listeriosis cases have previously been linked to consumption of contaminated cheese, control of this pathogen throughout the cheese production chain is of particular concern. To understand the potential for L. monocytogenes transmission via São Jorge cheese, a Portuguese artisanal cheese variety that bears a Protected Denomination of Origin classification, 357 raw milk, curd, natural whey starter, and cheese samples representative of the production chain of this cheese were collected over one year and tested for the presence of L. monocytogenes and selected physicochemical parameters. Although neither L. monocytogenes nor other Listeria spp. were detected in whey, curd, or cheese samples, 2 of the 105 raw milk samples analyzed were positive for L. monocytogenes. These 2 raw milk isolates represented a ribotype that has previously been linked to multiple human listeriosis outbreaks and cases elsewhere, indicating the potential of these isolates to cause human listeriosis. On average, physicochemical parameters of São Jorge cheese ripened for 4 mo presented values that likely minimize the risk of L. monocytogenes outgrowth during ripening and storage (mean pH = 5.48; mean moisture = 37.79%; mean NaCl concentration = 4.73%). However, some cheese samples evaluated in this study were characterized by physicochemical parameters that may allow growth and survival of L. monocytogenes. Even though our results indicate that raw milk used for São Jorge cheese manufacture as well as finished products is rarely contaminated with L. monocytogenes, continued efforts to control the presence of this pathogen in the São Jorge cheese production chain are urged and are critical to ensure the safety of this product.  相似文献   

6.
The occurrence of bacteria from the genus Listeria in raw sheep milk and traditional local cheese was studied in three regions of the Karak district of Jordan. Conventional plating methods for the detection of Listeria species were followed to determine the average and the percentage of the contaminated samples. The result shows that there were significant differences between the regions in the study concerning the average and the percentage of positive occurrences of Listeria species in raw sheep milk. The results also showed that mainly L. monocytogenes and, to a lesser degree, L. ivanovii and L. innocua were found in the milk samples, while the occurrence of L. monocytogenes in cheese samples was very low.  相似文献   

7.
Antibacterial activity of forty lactic acid bacteria (LAB) isolates toward Staphylococcus aureus was evaluated. The selected strains were then used as protective culture in artificial contaminated Domiati like cheese with S. aureus. The effect of using these strains on physicochemical properties and overall acceptability of fresh cheese was evaluated. Depending on its antibacterial activity, three strains of Lactobacillus rhamnosus 130RZFAAU, 131RZFAAU, and 190RZFAAU were selected for cheese making. No negative sensory properties were observed by the panelists when LAB strains were used as a single culture in the fresh cheese making. The application of these strains as protective culture in artificial contaminated cheesemaking process give a positive results. S. aureus was detected in cheese samples by culture method and propidium mono azide–quantitative polymerase chain reaction method. The results recommended that the strain L. rahmnosus 131RZFAUU that used in this study has antimicrobial activity against S. aureus and could be used as protective culture for improving the safety of Egyptian soft cheese.

Practical applications

Detection of pathogenic bacteria by classical tests can take several days. It would be useful to have a rapid detection protocol to screen for the presence of Staphylococcus aureus in milk and cheese. Application of real‐time PCR in cheese is sufficient in characterization the S. aureus communities in raw milk and follow the dynamics of the entire populations in cheese. Recently, some scientific publications have shown that the naturally cheese microflora can efficiently prevent the growth of pathogenic or spoilage microorganisms. The control of spoilage and pathogens bacteria has been traditionally done by chemical additives, but the application of promising protective cultures, especially for traditionally cheeses made from raw milk, is limited. This work present some protective culture selected for controlling S. aureus in soft cheese. This work confirm the PMA‐q PCR method for detection live cells of S. aureus in cheese rapidly.  相似文献   

8.
Intoxications and infections caused by food-borne pathogens represent an increasing public health problem, and diagnostic tests in multiplex format are needed for the rapid identification of food contaminations caused by more than one microbial species. We have developed a multiple PCR-based platform for the simultaneous detection of the widespread milk-associated pathogens Salmonella spp., Listeria monocytogenes and Escherichia coli O157. The assay combines an enrichment step in a medium properly formulated for the simultaneous growth of target pathogens, a DNA isolation method, and a multiplex Real-Time PCR detection system based either on dual-labelled probes (mRT-PCR), or on melting curve analysis (mHRM). The second, producing a distinct peak for each amplification product, allows the qualitative assessment of pathogen presence. Moreover, the internal amplification control (IAC) included in the reaction, ensuring the reliability of results, complies with quality management programmes. Inclusivity and exclusivity were 100% each, with a detection limit of 1 CFU for each pathogen in a total of five 25 ml-aliquots of raw milk, and a duration of two working days.The assay represents an alternative approach for the qualitative detection of the cited bacterial species, suitable for a relatively inexpensive screening of several milk samples, reducing the turnaround time and the workload.  相似文献   

9.
The present work is focused on the development of a TaqMan multiplex real-time PCR method for the detection of Salmonella, Shigella and L. monocytogenes in seafood, meat and ready-to-eat products. The aim of this study is to detect the three pathogens in one single test including an enrichment medium for the simultaneous growth of the bacteria of interest and an Internal Amplification Control (IAC) to monitor PCR inhibitors. For this purpose, three genes were selected, invA for Salmonella, ipaH for Shigella and hlyA for L. monocytogenes. Also, no. 17 broth without dextrose and further modified by adding Tween 80 was used for the enrichment step. Specificity of the method was checked against a panel of 24 non-target bacterial strains. RT-PCR efficiency obtained for the simultaneous amplification of all three pathogens was 102.5% for Salmonella, 108.9% for Shigella and 106.4% for L. monocytogenes. The limit of detection (LOD) was evaluated in seafood, meat and ready-to-eat products, being established within 3 and 22 cfu in 25 g of sample for the three bacteria analyzed. Seventy-eight samples were analyzed with multiplex RT-PCR including spiked and natural samples collected from different laboratories. Even though several RT-PCR methods have been developed for the detection of Salmonella, Shigella and L. monocytogenes, as far as we know this is the first method developed for the simultaneous detection of these three pathogens, coupling RT-PCR with an enrichment in the same broth and being tested in a wide range of different processed food samples with a low LOD. The application of this method can significantly reduce costs and time of analysis in laboratories, what would be reflected in a faster response in those risk situations when they are detected.  相似文献   

10.
The aim of this study was to survey the presence of Staphylococcus aureus and Listeria monocytogenes during the cheese making process in small-scale raw milk cheese production in Norway.The prevalence of S. aureus in bovine and caprine raw milk samples was 47.3% and 98.8%, respectively. An increase in contamination during the first 2-3 h resulted in a 73.6% prevalence of contamination in the bovine curd, and 23 out of 38 S. aureus-negative bovine milk samples gave rise to S. aureus-positive curds. The highest contamination levels of S. aureus were reached in both caprine and bovine cheese after 5-6 h (after the first pressing). There was no contamination of L. monocytogenes in caprine cheeses and only one (1.4%) contaminated bovine cheese.This work has increased our knowledge about S. aureus and L. monocytogenes contamination during the process of raw milk cheese production and gives an account of the hygiene status during the manufacture of Norwegian raw milk cheeses.  相似文献   

11.
This review concentrates on information concerning microbiological hazards possibly present in raw milk dairy products, in particular cheese, butter, cream and buttermilk. The main microbiological hazards of raw milk cheeses (especially soft and fresh cheeses) are linked to Listeria monocytogenes, verocytotoxin-producing Escherichia coli (VTEC), Staphylococcus aureus, Salmonella and Campylobacter. L. monocytogenes, VTEC and S. aureus have been identified as microbiological hazards in raw milk butter and cream albeit to a lesser extent because of a reduced growth potential compared with cheese. In endemic areas, raw milk dairy products may also be contaminated with Brucella spp., Mycobacterium bovis and the tick-borne encephalitis virus (TBEV). Potential risks due to Coxiella burnetii and Mycobacterium avium subsp. paratuberculosis (MAP) are discussed. Pasteurisation ensures inactivation of vegetative pathogenic microorganisms, which increases the safety of products made thereof compared with dairy products made from raw milk. Several control measures from farm to fork are discussed.  相似文献   

12.
《Journal of dairy science》2017,100(10):7874-7882
Cronobacter sakazakii, Bacillus cereus, and Salmonella spp. are common food-borne pathogens. The aim of this study was to develop a sensitive, specific, and rapid method for the simultaneous detection of these 3 pathogens in milk and milk products. Three specific primers were designed based on ompA, invA, and cesB of C. sakazakii, Salmonella spp. and B. cereus, respectively, for use in a multiplex PCR (mPCR). To eliminate false-positive results, cells were pretreated with propidium monoazide (PMA) for the selective elimination of the genomic DNA of dead cells. An internal amplification control was applied as an indicator of false-negative results from the interference of inhibitors in the food matrix. Results showed that, in pure culture, the limits of detection of the assay for C. sakazakii, Salmonella Enteritidis, and B. cereus were 9.5 × 104, 7.4 × 102, and 7.5 × 102 cfu/mL, respectively. Moreover, 8 cfu/mL of viable B. cereus cells were detected after 5 h of enrichment, and 9 cfu/mL of viable C. sakazakii and 7 cfu/mL of Salmonella Enteritidis were detected after 7 h of enrichment in spiked pure milk, walnut peanut milk, and whole-wheat milk. To validate the PMA-mPCR assay, the PMA-mPCR assay and the traditional culture method were performed to detect the 3 bacterial strains in 1,165 milk product samples. The PMA-mPCR assay obtained the same results as the culture-based method. Results demonstrated that the PMA-mPCR assay has excellent sensitivity and specificity for the simultaneous detection of viable C. sakazakii, Salmonella Enteritidis, and B. cereus in milk and milk products.  相似文献   

13.
A 7-plex PCR assay was developed to achieve an effective detection and identification of serotype Enteritidis of Salmonella spp. and shiga toxin-producing type of Escherichia coli O157 in meat products. Six DNA sequences in the invA and sdfI genes of Salmonella Enteritidis as well as rfbE, eae, stx1, and stx2 genes of E. coli O157:H7 were employed to design primers. The multiplex PCR assay could specifically and sensitively detect and identify target pathogens. Applying the assay to meat samples, the multiplex PCR assay was able to simultaneously detect and identify the two pathogens at a sensitivity of three CFU/10 g raw meats after simple 16 h enrichment in buffered peptone water. Further applying in 21 retail meat samples revealed that two samples were positive for non-shiga toxin producing E. coli O157, one sample was positive for Stx2 producing E. coli O157 and five samples were positive for Salmonella enterica Enteritidis. Taken together, the 7-plex PCR assay is a rapid and reliable method for effectively screening single or multiple pathogens occurrences in various meat products, and could also identify the Salmonella enterica Enteritidis from all Salmonella spp. and shiga toxin producing type from all E. coli strains. Considering as a non expensive screening tool, the multiplex PCR assay has a great potential in complement for food stuff analysis by conventional microbiological tests.  相似文献   

14.
The bacterial pathogen Listeria monocytogenes is responsible for listeriosis, a food-borne disease, which may result in severe illness and possible death. Large outbreaks of listeriosis have been associated with food products including soft cheeses and ready to eat food products. Polymerase chain reaction (PCR) is a molecular identification method for food-borne pathogens; however, a drawback of this method is that false-positive or false-negative results may occur. To validate the accuracy of the PCR as a powerful molecular tool for pathogen detection, it is important that false-negative results be distinguishable from true-negative PCR results. The aim of this study was to design and include an internal amplification control (IAC) within the PCR to coamplify with L. monocytogenes in order to identify false-negative results of L. monocytogenes from ostrich meat and camembert cheese samples. The IAC had to be incorporated into the PCR without loss of specificity and sensitivity on the detection limit of L. monocytogenes and was developed and tested for use in a multiplex PCR detection system. A region of the pUC19 plasmid was selected as the IAC for this study. The optimal concentration at which pUC19 would coamplify with L. monocytogenes was determined to be 0.001 pg/μL. Following an enrichment procedure, the minimum number of organisms detected in a spiked food sample by the PCR was 8 CFU/mL L. monocytogenes; the same detection limit was attained when the pUC19 IAC was included in the PCR. An optimal pUC19 IAC concentration increased the reliability of the PCR for food diagnostic purposes.  相似文献   

15.
A multiplex PCR procedure based on genes iap (coding for the invasion‐associated 60 kDa protein or p60) and hly (coding for listeriolysin O) of Listeria monocytogenes was to used to investigate the status of its contamination along the major milk‐processing environments. Duplex PCR amplified fragments of the iap gene at about 1.45 kb from all strains of major Listeria spp. tested and a 420 bp fragment of hly from L. monocytogenes reference strains. With triplex PCR, all L. monocytogenes strains exhibited a 420 bp fragment of hly as well as a 700 bp fragment of iap instead of its 1.45kb PCR product. The tentative L. monocytogenes isolates (n = 27) out of 566 samples of milk and milk‐processing environments in the PALCAM agar from cultures of buffered listeria enrichment broth were further subjected to both API and triplex PCR identification. Both methods identified the same 20 isolates as L. monocytogenes. The triplex PCR procedure detected as low as 3.2 × 101 cfu mL?1 of listerial cells even in the presence of L. innocua (108 cfu mL?1). It could detect 1.4 × 102 listerial cells mL?1 directly from milk artificially contaminated with the bacteria. Lower levels of L. monocytogenes cells in milk (1.45 × 101 to 1.45 × 100 cfu mL?1) could be detectable if the inoculated milk samples were cultured for 3–6 h. The bacterium was found not only in raw milk, sewage water and vessel surfaces but also in pasteurized milk. Copyright © 2005 Society of Chemical Industry  相似文献   

16.
In this survey, 150 samples of raw milk, white cheese and ice cream from three different dairy‐processing plants in Ankara were analysed to find out if they were contaminated with Escherichia coli, Staphylococcus aureus or Bacillus cereus. The highest contamination percentages were found in raw milk samples as follows: B. cereus (90%), E. coli (74%) and S. aureus (56%) followed by cheese (70% B. cereus, 60% E. coli, and 48% S. aureus) and ice cream (56% E. coli, 36% S. aureus and 20% B. cereus). The survey showed that 2% of cheese samples were contaminated with E. coli O157. It was also found that the numbers of S. aureus and E. coli in raw milk, cheese and ice cream samples exceeded the numbers permitted under the Turkish Food Codex (TFC). The number of B. cereus in raw milk, cheese and ice cream samples was lower than the limit given in the TFC standards. The study also showed that E. coli and S. aureus exhibit resistance to ampicillin, penicillin, tetracycline, erythromycin, gentamicin and trimethoprim/sulfamethoxazole. Escherichia coli isolates also showed resistance to chloramphenicol and ciprofloxacin but none of them exhibited resistance to cefotaxime. All S. aureus isolates were found to be susceptible to cefotaxime, chloramphenicol, and ciprofloxacin. Bacillus cereus isolates were found to be resistant to ampicillin, penicillin and trimethoprim/sulfamethoxazole and sensitive to cefotaxime, chloramphenicol, ciprofloxacin erythromycin, gentamicin and tetracycline.  相似文献   

17.
The effect of Lactococcus lactis nisin‐producing strains, isolated from Italian fermented foods, on the survival of two foodborne pathogens namely Listeria monocytogenes and Staphylococcus aureus was investigated in experimental cheese production. One of the three Lactobacillus lactis nisin innoculated as starters, Lactobacillus lactis 41FL1 lowered S. aureus count by 1.73 log colony‐forming units (cfu)/g within the first 3 days, reaching the highest reduction, 3.54 log cfu/g, by the end of ripening period of 60 days. There was no effect on L. monocytogenes. The application of L. lactis 41FL1 as bioprotective culture in controlling S. aureus shows considerable promise.  相似文献   

18.
Staphylococcus aureus (S. aureus) can cause mastitis in cattle and, therefore, can be present in milk. This study was undertaken to determine the prevalence of coagulase positive S. aureus and its enterotoxin genes sea, seb, and sec in isolates recovered from raw milk, feta cheese, and human hand swabs of milk and cheese handlers in Beni‐Suef province, Egypt. A total of 100 samples of raw milk and 50 samples of pasteurized‐milk feta cheese were collected. In addition, 50 hand swabs from milk handlers and 25 hand swabs from cheese handlers were examined for the presence of coagulase positive S. aureus. The isolates were characterized by multiplex PCR for detection of sea, seb, and sec genes, and for resistance to 5 classes of commonly used antibiotics. Twelve (12/100), 12 (6/50), and 17% (13/75) of milk, cheese, and hand swab samples, respectively, were positive for coagulase positive S. aureus. One isolate was obtained from each positive sample (31 isolates), and none contained genes for SEA or SEC production. Twenty‐five percent, 33%, and 31%, respectively, of the isolates contained the genes for SEB, resulting in 3%, 4%, and 5% of samples being positive for toxin producing coagulase positive S. aureus, respectively. At least one isolate was resistant to each of the antibiotics tested. Despite the low potential for SEB production shown, preventative measures, such as maintenance of the cold‐chain and good hygienic practices should be implemented to further reduce the potential risk to public health from SEB, and to reduce the spread of antimicrobial resistance.  相似文献   

19.
Listeria monocytogenes is a ubiquitous bacterium widely distributed in the environment that can cause a severe disease in humans when contaminated foods are ingested. Cheese has been implicated in sporadic cases and in outbreaks of listeriosis worldwide. Environmental contamination, in several occasions by persistent strains, has been considered an important source of finished product contamination. The objectives of this research were to (i) evaluate the presence of L. monocytogenes within the factory environments and cheeses of three processing plants, artisanal producer of raw ewe's milk cheeses (APC), small-scale industrial cheese producer (SSI) and industrial cheese producer (ICP) each producing a distinct style of cheese, all with history of contamination by L. monocytogenes (ii) and identify possible sources of contamination using different typing methods (arsenic and cadmium susceptibility, geno-serotyping, PFGE). The presence of markers specific for 3 epidemic clones (ECI–ECIII) of L. monocytogenes was also investigated. Samples were collected from raw milk (n = 179), whey (n = 3), cheese brining solution (n = 7), cheese brine sludge (n = 505), finished product (n = 3016), and environment (n = 2560) during, at least, a four-year period. Listeria monocytogenes was detected in environmental, raw milk and cheese samples, respectively, at 15.4%, 1.1% and 13.6% in APC; at 8.9%, 2.9% and 3.4% in SSI; and at 0%, 21.1% and 0.2% in ICP. Typing of isolates revealed that raw ewe's milk and the dairy plant environment are important sources of contamination, and that some strains persisted for at least four years in the environment. Although cheeses produced in the three plants investigated were never associated with any case or outbreak of listeriosis, some L. monocytogenes belonging to specific PFGE types that caused disease (including putative epidemic clone strains isolated from final products) were found in this study.  相似文献   

20.
Cheese may be manufactured in the United States using raw milk, provided the cheese is aged for at least 60 days at temperatures not less than 35 °F (1.7 °C). There is now increased concern among regulators regarding the safety of raw milk cheese due to the potential ability of foodborne pathogens to survive the manufacturing and aging processes. In this study, 41 raw milk cheeses were obtained from retail specialty shops, farmers’ markets, and on-line sources. The cheeses were then analyzed for the presence of Listeria monocytogenes, Salmonella, Escherichia coli O157:H7, Staphylococcus aureus, and Campylobacter. Aerobic plate counts (APC), coliform and yeast/mold counts were also performed. The results revealed that none of the enteric pathogens were detected in any of the samples tested. Five samples contained coliforms; two of those contained E. coli at less than 102 cfu/g. Three other cheese samples contained S. aureus. The APC and yeast-mold counts were within expected ranges. Based on the results obtained from these 41 raw milk cheeses, the 60-day aging rule for unpasteurized milk cheeses appears adequate for producing microbiologically safe products.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号