首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This paper describes results from a study of the effects of various applications of phosphorus (P) on the amounts, forms and potential mobility of P in grassland soils (0-7.5 cm) collected from four locations in the United Kingdom (Hertfordshire, Devon) and New Zealand (Taranaki, Canterbury). A sequential extraction scheme (NH4Cl, NH4F, NaOH I, H2SO4, NaOH II, residual P) designed to isolate P associated with aluminium (Al), iron (Fe) and calcium (Ca) was used to characterise P in the grassland soils from each location which had received various quantities of mineral fertilizer, organic manure and lime. Concentrations of total P in the soils ranged from 540 to 3,994 mg P kg-1, and sequential extraction recovered 80–94% of total soil P. Extractable forms of inorganic P and organic P accounted for 40–52% and 31–50% of total soil P respectively. Inorganic and organic P present in the NaOH I fraction (P associated with Fe, Al and organic matter) accounted for most of the P which accumulated in soil from P inputs. Distribution of accumulated soil P between the various inorganic and organic P fractions appeared to be mainly controlled by the nature and availability of sorption surfaces which act as sinks for inorganic P. Phosphate sorption index data for the various soil sets indicated that the mean value of bicarbonate extractable inorganic P (Olsen P) which represented effective P saturation ranged from 61 to 217 mg P kg-1. Potentially mobile soil P as determined by extraction with 0.01M calcium chloride (CaCl2) was found to be most strongly correlated to the NH4F, NaOH I and H2SO4 inorganic P fractions using a Freundlich isotherm.  相似文献   

2.
Soil tests suitable for estimating the phosphorus (P) status of soils fertilised with soluble or sparingly soluble P fertilisers (reactive phosphate rock) were evaluated using the New Zealand Ministry of Agriculture Technology (NZMAFTech) National Series forms of phosphate trials on permanent pastures located throughout NZ. This included a common core of treatments comparing Sechura phosphate rock (SPR) with triple superphosphate (TSP). At each site, a re-application of twice maintenance TSP was superimposed on one-half plots that previously had received six annual applications of increasing amounts of P (0, 0.5, 0.75, 1.0 and 2.0 times the maintenance rate) in the form of TSP or SPR. Before the re-application of TSP, soil samples (0–30 and 0–75 mm depths) were collected from each plot. All the trials were run for 1 year during which seven to ten harvests were taken. Pasture response was expressed as percent increase in yield obtained with re-application over the previous treatment.The 0.5 NaHCO3 based (Olsen P) extractant with different combinations i.e. soil volume (Olsen (v)), soil weight (Olsen (w)), shaking time variations (Olsen (16 h)) and soil:solution ratio (Colwell), and Resin P soil tests were conducted on soils taken from the plots prior to re-application of TSP. The Olsen (v), Olsen (16 h) and Colwell P values increased with increasing rates of P applied in all soils with values for sparingly soluble P materials being less than where soluble P fertiliser had been previously applied. The Resin P values showed similar increases with P applied regardless of the solubility of previously applied fertiliser. When the yield increases caused by TSP application to all treatments (irrespective of fertiliser source) were regressed against soil test values, Resin P explained 76% of the variation in yield response, compared to 50% by Olsen (v), 42% by Olsen (w), 39% by Olsen (16 h) and 40% by Colwell P. Partitioning the data according to fertiliser source slightly improved the coefficient of determination for Resin P for both the soluble (R2=0.81) and sparingly soluble (R2= 0.80) P fertilisers. With 0.5 M NaHCO3 (Olsen) extractants, R2 values consistently indicated a poorer prediction for the SPR treatments. A Resin P model was able to account for more variance in yield response to re-applied TSP, than an Olsen P model because the Olsen model underestimated the yield response to re-applied TSP on the PR treatments. The Resin test is more suitable than the current Olsen test for assessing the plant available P status of soils previously fertilised with fertilisers of varying solubility.Dr. A.G. Sinclair died on 3 December 1996 whilst this paper was in preparation.  相似文献   

3.
The possible effect of urea hydrolysis on the availability of phosphorus (P) from phosphate rock (PR) was evaluated in two greenhouse experiments with maize, using two sources of PR — Pesca (Colombia) and Bayovar (Peru) — representing low and high chemical reactivity, respectively.In Experiment I, on a neutral Josephine silty clay loam (pH 6.2) (Typic Haplozerult), Bayovar PR compacted with urea (Bayovar PR + urea) performed better than Bayovar PR compacted with NH4Cl (Bayovar PR + NH4Cl) in increasing dry-matter yield at a rate of 100 mg P kg–1 but not at rates of 50 and 200 mg P kg–1. It was also found that the dry-matter yield obtained with compacted Bayovar PR products was significantly higher when the N ratios of urea: NH4Cl were 1:1 or higher than when the ratios were below 1:1. Although Bray I–P can overestimate available P from PR with respect to that from TSP, a good relationship was observed between Bray I–P and dry-matter yield from various compacted Bayover PR products with a small particle size (–0.43 + 0.15 mm).In Experiment II an acid Bladen sandy loam (pH 4.5) (Typic Albaquult) was used. Finely ground Bayovar PR (– 0.07 mm) was about 66% as effective as TSP in increasing dry-matter yield, whereas Pesca PR was ineffective. When Pesca PR was partially acidulated with H3PO4 at 20% level (PAPR), it became 70% as effective as TSP. Granulated PAPR and Pesca PR compacted with TSP (Pesca PR + TSP) were found to be equally effective in increasing dry-matter yield when both products had the same particle size and the same water-soluble and citrate-soluble P as percent of total P, and when prilled urea was used as the N source. However, when urea was compacted with Pesca PR and TSP, the product's effectiveness was further increased by 30% and to the same level as TSP.In summary, the results tend to support the suggestion that urea hydrolysis can be beneficial in increasing the availability of P from PR to plants in soils having medium to high organic matter contents.  相似文献   

4.
The objective of this work was to develop and evaluate a soil test suitable for estimating the phosphorus status of soils whether they were fertilized with soluble or sparingly soluble P fertilizers or both. Four New Zealand soils of contrasting P sorption capacity and exchangeable Ca content were incubated alone or with monocalcium phosphate (MCP), reactive North Carolina (NC) phosphate rock or unreactive Florida (FRD) rock, at 240 mg P kg–1 soil, to allow the P sources of different solubilities to react with each soil and provide soil samples containing different amounts of extractable P, Ca and residual phosphate rock. The phosphorus in the incubated soils was fractionated into alkali soluble and acid soluble P fractions using a sequential extraction procedure to assess the extent of phosphate rock dissolution. Eight soil P tests [three moderately alkaline — Olsen (0.5M NaHCO3) modified Olsen (pretreatment with 1M NaCl) and Colwell; three acid tests — Bray 1, modified Bray 1 and Truog; and two resin tests — bicarbonate anion exchange resin (AER) and combined AER plus sodium cation exchange resin (CER)] were assessed in their ability to extract P from the incubated soils.The 0.5M NaHCO3 based alkaline tests could not differentiate between the Control and FRD treatments in any soil nor between the Control, NC and FRD treatments in the high P sorption soils. The acid extractants appeared to be affected by the P sorption capacity of the soil probably because of reabsorption of dissolved P in the acid medium. The AER test gave results similar to Olsen. Only the combined AER + CER test extracted P in amounts related to the solubility of the P sources incubated with each soil. Furthermore, when soil samples were spiked with FRD and NC and extracted immediately, the P extracted by the AER + CER test, over and above the control soils, increased with the amount and chemical reactivity of the rocks. There was no extraction of rock P by any of the alkaline extractions.Increases in the amounts of P extracted (P) by each soil test from the fertilized soils, over and above the control soils were compared with the amounts ofP dissolved from the fertilizers during incubation (measured by P fractionation). Soil P sorption capacity had least influence on the amounts of P extracted by the AER + CER and Colwell tests. However, the Colwell test was unable to differentiate between all P sources in all four soils and suffered from the disadvantage of producing coloured extracts. The AER + CER test appeared to have the potential to assess the available P status of soils better than the other tests used because of its ability to extract a representative portion of residual PR (in accordance with the amount and reactivity) and dissolved P, and thus to differentiate between fertilizer treatments in all four soils.  相似文献   

5.
A glasshouse experiment was conducted on four soils contrasting in P sorption capacity and exchangeable Ca content with perennial ryegrass using six phosphate rock (PR) sources and a soluble P source applied at four rates (including a control). After three harvests (11 weeks) replicate pots of each treatment were destructively sampled and Olsen P and mixed cation-anion exchange resin (Resin P) extractions carried out. The remaining replicated treatments were harvested another seven times (during 41 weeks). Yields (for the last seven harvests) were expressed as percentages of the maximum yield attainable with MCP.In general, the Resin P test extracted more than twice as much P as the Olsen test. There was a significant increase in Resin P with an increase in the amount of each P source in all four soils, but Olsen P values were not significantly different for soils treated with different rates of each phosphate rock. The abilities of the Olsen and mixed resin soil P tests to predict the cumulative dry matter yield from 7 harvests and the relative yield of ryegrass were compared. Correlations between measured yield (for the last 7 harvests) and soil test for each soil, and relative yield and soil test for all four soils were assessed by regression analysis using Mitscherlich-type models.When dry matter yields were regressed separately against soil test values for each soil, the Resin P consistently accounted for 18–28% more of the variation in yield than did Olsen P. For Resin P a single function was not significantly different from the separate functions fitted to MCP and PR treatments. However, for Olsen P the separate functions for the MCP and PR treatments varied significantly from the single fitted function. The Resin P test (R2 = 0.84) was a better predictor of relative yields over this range of soils than the Olsen test (R2 = 0.75). Two regression models based on the regression of relative yield for MCP treatments against either Olsen or Resin were developed. These models were then fitted to the relative yield data on soils fertilized with PRs only. The Olsen P model was found to be a poorer predictor (R2 = 0.41) than the Resin P model (R2 = 0.73) because it underestimated the observed yield of the PR treatments.  相似文献   

6.
The phosphate sorption isotherms are needed to explain differential plant responses to P fertilization in soils. Laboratory and greenhouse experiments investigated the use of phosphorus sorption isotherms in relation to P fertilizer requirement of wheat in ten benchmark soils of Punjab, India. The modified Mitscherlich Equation (3) was used to describe plant response observed in different soils. Maximum obtainable yield (MOY) ranged from 11.6 g pot–1 in Gurdaspur (I) sandy clay loam to 7.0 g pot–1 in Nabha sandy clay loam. Response to P applied @ 25 mg P kg–1 soil was maximum (77%) in Bathinda sand and minimum in Chuharpur clay loam (33%). The response curvature varied from 3.74 × 10–2 in Nabha sandy clay loam to 4.43 × 10–2 in Kanjli sandy loam. The soil solution P required to produce optimum yield (90% MOY) varied from 1.61 µg ml–1 in Bathinda sand to 0.10 µg ml–1 in Sadhugarh clay. Dry matter yield obtained at 0.2 µg ml–1 solution P concentration ranged from 55% in Bathinda sand to 85% of MOY in Gurdaspur (II) clay loam. At the same solution P concentration (0.1 µg P ml–1), dry matter yield was 91% in Sadhugarh clay, 80% in Gurdaspur (II) clay loam and, 43% of MOY in Bathinda sand and eventually coincided with the decreasing maximum buffer capacity (MBC) in these soils. At the same level of sorbed P (100 mg P kg–1 soil) the yield was observed to be inversely proportional to MBC. The study, therefore, concludes that, soils should be grouped according to their P sorption characteristics and MBC before using critical soil solution P as a criterion for obtaining optimum yields.  相似文献   

7.
Field experiments were conducted at Al-Qatif area in the eastern region of Saudi Arabia to study the status and availability of B under B fertilization regime in three types of calcareous soils and to evaluate the response of two alfalfa varieties, Hassawi (local variety) and Hyden (american variety), to increasing levels of added B.Boron was applied at 7 rates as Na2B4O7.10H2O. Four cuttings were taken from each site at different intervals. Data showed that extractable B by hot-water and NH4HCO3-DTPA (8 days after borax application) was significantly (p <0.001) affected by soil type and B applications. The amount of B recovered by hot-water from the three soils, 200 days after borax application, was in the following order: sandy loam > sandy clay loam > clay loam.Total dry matter of alfalfa (4 cuttings) was significantly (p <0.05) affected by soil type, borax application rates and alfalfa variety.The critical level of B in plant as determined by Cate and Nelson analysis, ranged from 148 to 652 mg kg–1 dry matter for Hassawi cultivar and 138 to 521 mg kg–1 for Hyden cultivar in the first harvest. However, the upper critical levels for the 2nd, 3rd and 4th harvests were 800, 875 and 935 mg B kg–1 dry matter for Hassawi and 603, 723 and 812 mg B kg–1 for Hyden varieties, respectively. Nevertheless, the lower critical levels for 2nd, 3rd and 4th harvests ranged from 148 to 153 mg B kg–1 dry matter for Hassawi and 138 to 142 mg B kg–1 for Hyden.  相似文献   

8.
Data on the responses of micronutrients in definable soil fractions to cultivation and management are required to design judicious fertilization practices to improve soil fertility in the savanna. Iron and manganese fractions are particularly sensitive to cultivation and management practices. The objectives of this study were to determine the sizes and changes in Fe and Mn fractions in a savanna Alfisol cultivated for 50 years and fertilized with (i) NPK, (ii) farmyard manure (FYM), (iii) FYM + NPK, (iv) a control plot, and (v) a natural site adjacent to the experimental field. The mean concentration of total Fe (FeT) ranged from 9.4 g kg–1 in the surface layer to 45 g kg–1 in the subsurface layer, whereas total mangenese (MnT) concentration ranged from 79 mg kg–1 in the surface layer to 279 mg kg–1 in the subsurface layer. The distribution of FeT followed the distribution of clay in the soil profile across the field. The distribution of MnT did not, however, follow the characteristic depth distribution of clay as observed for FeT, suggesting that Mn movement and distribution in this soil might be independent of clay movement and distribution. The concentrations of DTPA extractable Fe and Mn were much higher than the critical levels delineated for soils. Application of FYM increased the concentration of amorphous oxide bound Fe over the natural site and reduced the concentration of residual or inextractable Fe in the soil. Similarly, fertilization with FYM reduced the concentration of residual Mn, and increased the exchangeable, amorphous oxide bound and reducible Mn compared to the natural site. It seems that sole application of FYM or application in combination with NPK rather than NPK alone can mobilize non-labile Mn and Fe sources into labile and plant available forms of Fe and Mn in a savanna Alfisol.  相似文献   

9.
Nine soil tests for phosphate were evaluated for predicting the yield and P content of wheat, barley and oats grown on a sandy soil in Western Australia: Olsen, modified Olsen 1 (soil:solution ratio 1:5), modified Olsen 2 (soil:solution ratio 1:50), Colwell, Bray 1, Bray 2, modified Bray 2T (shaking time 10 minutes), modified Bray 2C (pH 3.7) and lactate. The soil had been fertilized 5 years previously with 20 levels each of superphosphate (OSP, range 0 to 400 kg P ha–1) and Queensland rock phosphate (QRP, range 0 to 20 000 kg P ha–1). For each species and fertilizer taken separately, all the tests, except for lactate, gave a good prediction of yield. When data for OSP and QRP were pooled, Bray 2 and modified Bray 2T tests were unsatisfactory predictors of both yield and P content.A linear relationship (P < 0.05) between mean soil tests value () and the standard deviation ( ) of the test value was observed for each soil test. For QRP, the results for lactate were the most variable (i.e./ was greatest) followed by modified Olsen 2 > Bray 1 > Bray 2 > Olsen > modified Bray 2C > modified Olsen 1 > modified Bray 2T > Colwell. The order for OSP fertilized soil was Bray 1 > modified Bray 2T > Bray 2 > Olsen > Colwell > modified Bray 2C > modified Olsen 1 > lactate > modified Olsen 2. For combined OSP and QRP data, the results of the Olsen 1 and Colwell extractions were the least variable.Errors in the prediction of yield ( Y ) for all crops resulting from an error in soil test values () were calculated. For OSP-fertilized soil variability in values for the Bray-1 test provided the highest error (about 16%) in the prediction of the yield, followed by Bray 2 (12%) > Bray 2T (10%) > Olsen (8%) > Colwell (7%) > modified Bray 2C (6%) > lactate (4%). Maximum error was at yields of about 65% of maximum yield. For soil fertilized with QRP, lactate provided the highest error (about 10%) in the prediction of yield, followed by the other tests (< 6%). Maximum error was at yields of about 35% of maximum yield.The Colwell soil test gave the most accurate overall prediction of yield for both fertilizers.  相似文献   

10.
The disposal of olive mill wastewater (OMW) is a critical pollution problem, especially in Mediterranean countries. OMW is produced at a rate of ca. 2 1 kg-1 of olives. OMW has a biochemical oxygen demand (BOD) of 35–48 g kg-1. The evaporation of OMW in ponds produces large amounts of sludge (OMWS), which after being dried can be used as organic fertilizer or amendment, either directly or co-composted with agricultural by-products. The present paper deals with the use of a compost of dried sludge of OMW and other agricultural by-products – olive mill wastewater sludge compost (OMWSC) – to amend for three consecutive years two typical soils of southern Spain: a Typic Xeropsamment, S1 (CaCO3 86 g kg-1; OM 1.4 g kg-1; sandy soil) and a Typic Xerorthent, S2 (CaCO3 270 g kg-1; OM 5.3 g kg-1; sandy–clay–loam soil). Both soils are poor in organic matter, in total Kjeldahl-N (TKN 347 and 536 mg kg-1) and in available-P (Olsen P 3.0 and 2.5 mg kg-1). Mineralization of the organic-N of the OMWSC (OM 106–338 g kg-1; TKN 7–15 g kg-1; C/N 12.3–18.9) and of soils treated with OMWSC was studied under laboratory conditions by an aerobic, non-leaching incubation procedure. In both cases, the N-mineralization process was well described by first-order-reaction kinetics, and the potentially mineralizable-N (N0) and the N-mineralization rate constant (k) estimated from a single first-order equation. Values for N0 (equivalent to 16% of the N of the compost) and k (0.041 week-1) indicated that the OMWSC was a mature compost composed mainly of well-humified organic matter, very resistant to mineralization. Soils treated with OMWSC showed increases of the OM, TKN and N0 contents and of the potential rate of mineralization (N0 x k), with respect to untreated or mineral fertilized soils. The increases of TKN in soils treated with OMWSC were even higher than expected by the N added together with compost, and attributed to non-symbiotic N fixation. Values of OM, TKN, N0 and N0 x k, were higher in S2 than in S1, which can be explained based on the soil properties related to fertility, especially soil texture.  相似文献   

11.
Phosphate sorption curves give useful information about the management of the P fertility in soils. This study was conducted to examine how P sorption characteristics were influenced, and could be predicted from the properties of Mediterranean soils of Spain. The 114 soils studied differed widely in origin and properties and were grouped as calcareous (43) and noncalcareous (71). Citrate-bicarbonate-dithionite extractable Fe (Fed) and Al (Ald) and clay were the properties best correlated with the P sorbed and the P buffer capacity at an equilibrium concentration of 0.2 mg P l–1. This suggests that Fe oxides and silicate clays play a significant role in P sorption. Stepwise regression analysis showed, however, that clay was not a significant variable in the calcareous group, but active CaCO3 was. Prediction of the P sorption parameters was better for the noncalcareous than for the calcareous group. This reduced ability to predict P sorption in calcareous soils may be due to the inability of total or active CaCO3 to adequately measure the reactivity of carbonates towards P sorption. From 53 to 75% of the variation in P sorption parameters could be explained by regression equations including all or several of the following routinely-determined soil properties: clay, pH, Fed, and active CaCO3. These equations could, therefore, provide a simple and rapid estimation of P sorption in soils of Mediterranean regions.  相似文献   

12.
The agronomic effectiveness of a partially acidulated phosphate rock (PAPR) was measured in a field experiment with sorghum (Sorghum bicolor cv. CSH-6) in a shallow Alfisol at the ICRISAT farm, Patancheru (Hyderabad), India. The experiment compared PAPR with single superphosphate. The PAPR was made by acidulating an indigenous Indian phosphate rock (Mussoorie) with H2SO4 at 50% acidulation level. P response was evaluated at a single relatively high N rate (120 kg ha–1) with five rates of P (0, 2.2, 4.4, 8.8, and 17.6 kg P ha–1). A significant response to P was obtained at rates up to 17.6kg P ha–1.There was no significant difference due to source of P in terms of sorghum grain yield or total P uptake. Both Olsen and Bray 1 soil tests underestimated P availability from PAPR with respect to that from SSP.A rapid rate of P uptake was observed during grain filling to maturity (81–102 days), when 40% of the total P was taken by the plant. The internal efficiency of both P sources was the same.  相似文献   

13.
Wide variation in results exists in the literature on the effectiveness of composts to sustain the phosphorus (P) nutrition of crops. The aim of this work was to assess the importance of some soil and composts properties on the utilization of compost-P by white clover (Trifolium repens L.). This study was carried out with samples collected from four composts made from solid kitchen and garden wastes, and with two soil samples taken from the A horizon of a P-rich sandy acidic Dystrochrept and of a P-limited clayey calcareous Eutrochrept. Changes in the amount of inorganic P (Pi) isotopically exchangeable within 1 min (E1min) were measured during 32 weeks in incubated soil-composts or soil-KH2PO4mixtures where P sources had been added at the rate of 50 mg P kg–1 soil. Uptake of compost-P or KH2PO4-P by white clover was measured on the same amended soils during 16 weeks. In both soils, the application of composts resulted after 32 weeks of incubation in E1min values ranging between those observed in the control without P and those observed in the KH2PO4treatment, i.e., in values ranging between 4.2 and 5.9 mg P kg–1 in the sandy acidic soil and between from 1.6 to 4.3 mg P kg–1 in the clayey calcareous soil. The total coefficient of utilization of compost-P (CU-P) by white clover reached values in both soils for the four composts ranging between 6.5% and 11.6% of the added P while in the presence of KH2PO4 the CU-P reached values ranging between 14.5% in the clayey calcareous soil and 18.5% in the sandy acidic soil. Results obtained in the sandy acidic soil suggest, that white clover initially used a fraction of the rapidly exchangeable compost P, while at a latter stage plant roots enhanced the mineralisation of compost organic P and took up a fraction of the mineralized P. These relations were not observed in the clayey calcareous soil probably because of its high sorbing capacity for P. In the sandy acidic soil, composts application increased the uptake of soil P by the plant from 31.4 mg P kg–1 soil in the control without P to values ranging between 37.9 to 42.7 mg P kg–1 soil in the presence of composts. This indirect effect was related to a general improvement of plant growth conditions in this soil induced by compost addition (from 9.9 g DM kg–1 soil in the control without P to values ranging between 14.0 to 16.1 g DM kg–1 soil in the presence of composts) and/or to the release of Al- or Fe bound soil P to the solution due to soil pH increase following compost application. Finally the total coefficient of utilization of P (CU-P) derived from KH2PO4 and composts was related to the total amount of N exported by white clover in the P-limited clayey calcareous soil but not in the P-rich sandy acidic soil. This suggests that in a soil where N2 biological fixation is limited by low P availability, the CU-P of a compost by white clover is not only related to the forms of P present in the compost but also to its effect on N nutrition. However, it is not clear whether this improved N nutrition was due to compost mineralisation, or to an indirect compost effect on the N2 biological fixation.  相似文献   

14.
Organic carbon is known to alter crop response to applied phosphorus (P) but that fact has not been incorporated in soil test interpretations. To achieve this objective, field experiments with wheat were conducted for four years on alkaline soils of Punjab, India. The experimental soils ranged from loamy sand to loam in texture, 7.4 to 9.6 in pH, 0.16 to 0.75% in organic carbon (OC) and 2 to 40 mg Olsen extractable P kg–1 soil. Response of wheat to fertilizer phosphorus application was related to the combined effect of Olsen P and soil OC content. At a given Olsen P level, wheat yield was a function of soil OC content. Multiple regression analysis of the data showed that OC content <0.2% did not affect yield significantly. At values >0.6%, OC along with Olsen P accounted for 97% of the variation in yield and there was no response to applied fertilizer P. Yield isoquants for 4 and 5 tons grains ha–1 showed that for a given Olsen P level, as OC content increased the amount of fertilizer P required to achieve a yield target decreased. It was shown that OC may be used to approximate the contribution of organic P mineralization to plant available soil P during a growing season. The reliability of fertilizer recommendations based on Olsen P may be improved on some alkaline soils by consideration of soil OC content.  相似文献   

15.
Relationships between plant response and rates of dissolution of ground (< 150µm) North Carolina phosphate rock (NCPR), NCPR 30% acidulated with phosphoric acid (NCPAPR) and monocalcium phosphate (MCP) were assessed in pot experiments. The three fertilizers were incubated for 1, 50 and 111 days, at the rates of 75, 150 and 750µg P g–1 soil, using two soils with different P-retention capacity. After each period of incubation, four pots were set up from each treatment, and perennial ryegrass (Lolium perenne) was grown in a growth chamber for about six weeks to assess the agronomic effectiveness of the fertilizers. Results in dry matter yield and P uptake showed that immediately following application (1 day incubation), the MCP (solution) was supplying more P to plants than either the NCPR or the NCPAPR applied at the same rate. After 50 and 111 days of incubation, the NCPR and NCPAPR were just as effective in the lower P-retention Tekapo soil. The relative agronomic effectiveness (RAE) of the NCPR and NCPAPR compared with MCP was generally poorer in the higher P-retention Craigieburn soil than in the Tekapo soil shortly after application, but improved with time of incubation. Ryegrass responses to the application of the three fertilizers corresponded to the changing trends of exchangeable P in the soils, measured by the isotopic method.Regressions were made between plant P uptake and indices describing the intensity factor (water extractable P), quantity factor (Bray I P, Olsen P, 0.5M NaOH extractable P and isotopic exchangeable P) and the kinetic factor (Fin) of soil P supply to plants in the Tekapo soil. The percentage of variation in plant P uptake explained by individual indices was generally less than 80%, no matter which of the three single variable models, the Mitscherlich, the quadratic or the power function was fitted. However, more than 96% of the variation in plant P uptake in the Tekapo soil could be explained by the power function models involving two variables. The rate of P dissolution (Fin) determined by the isotopic dilution method was included in all the two variable models. The results suggest that assessment of soil P supply to plants should consider the kinetic factor in addition to the intensity and quantity factors, particularly where P fertilizers with differing solubility are applied.  相似文献   

16.
Although the fertility status of soils in the West African moist savanna is generally believed to be low, crop yields on farmers' fields vary widely from virtually nil to values near the potential production. The soil fertility status was evaluated for a number of farmers' fields selected at random in 2 villages (Zouzouvou and Eglimé) representative for the derived savanna (DS) benchmark area and in 2 villages (Danayamaka and Kayawa) representative for the Northern Guinea savanna (NGS) benchmark area. The relation between soil fertility status and soil type characteristics and fertilizer use was explored. In an accompanying missing nutrient greenhouse trial, the most limiting nutrients for maize growth were determined. While soils in the DS villages were formed on different geological units, soils in the NGS villages could be differentiated according to their position on the landscape. Generally, soils in the DS contained a smaller amount of silt (104 vs. 288 g kg–1), a larger amount of sand (785 vs. 584 g kg–1), C (9.3 vs. 6.3 g kg–1), N (0.7 vs. 0.5 g kg–1), Olsen-P (10.7 vs. 5.4 mg kg–1), and had a higher CEC (7.0 vs. 4.8 cmolc kg–1) than soils in the NGS villages. The large silt content of the soils in the NGS is a reflection of the aeolian origin of the parent material. Within the benchmark areas, general soil fertility characteristics were similar in the villages in the NGS, except for a larger amount of particulate organic matter in Kayawa than in Danayamaka. This may also have led to a significantly larger amount of ammonium-N content in the 0–20 and 20–40 cm soil layers in Kayawa compared to Danayamaka (42 vs 24 kg N ha–1 in the 0–20 cm soil layer). Differences in topsoil soil characteristics between the DS villages were a reflection of differences in clay quality (kaolinitic vs. 2:1 clay minerals) of the parent material and past fertilizer use. The Olsen-P and exchangeable K contents were observed to increase with increased fertilizer application rate in both benchmarks, while fertilizer application rate had no significant effect on the organic C or total N content of the soil nor on its ECEC. The response of maize shoot biomass production to applied N was similar for both benchmarks (biomass accumulation in the treatment without N was, on average, 55% of the biomass production in the treatment which received all nutrients), while soils in the NGS responded more strongly to applied P than soils in the DS (37% vs 66% of biomass production in the treatment which received all nutrients). The more favourable P status of soils in Eglimé (DS) was attributed to the more intense use of P fertilizers, as a result of government-supported cotton production schemes. Response to cations, S or micronutrients were neglegible. A significant linear relationship was found between the soil Olsen-P content and the response to applied P up to levels of 12 mg kg–1 in the topsoil. Above this level, a plateau was reached.  相似文献   

17.
Exchangeable and non-exchangeable phosphate sorption in Portuguese soils   总被引:2,自引:0,他引:2  
Total amounts of phosphate (P) sorbed were measured for 6 Portuguese soils of widely varying properties.32P was used to assess the isotopically exchangeable and non-exchangeable sorbed P. Total sorbed and exchangeable P were described by modified Freundlich equations and non-exchangeable P by a Temkin equation. The Langmuir equation also proved to fit the data for non-exchangeable P well. The amount of total sorbed P required to attain 0.2 mg P 1–1 in solution ranged from 5.3 to 819 mg P kg–1. At this concentration exchangeable and non-exchangeable P values varied from 62.4 to 536.6 and from 0.4 to 322.1 mg P kg–1 respectively.There were highly significant (p < 0.01) correlations between soil organic matter and all forms of sorbed P (total sorbed, exchangeable and non-exchangeable). The P sorption parameters with correlation coefficients greater than 0.967 were parametersa andb of the modified Freundlich equation bn of Temkin and parametersa of the Langmuir equation. Aluminium extracted by acid oxalate (Alox) and dithionite (Aldi) showed highly significant correlation coefficients (r = 0.972) with the same sorption parameters. But P sorption was not closely related to the clay content Feox and Fedi. It was concluded that extractable aluminium (Alox and Aldi) had the most important effects on P sorption in these soils.  相似文献   

18.
A laboratory incubation experiment was conducted to gain a better understanding of N transformations which occur near large urea granules in soil and the effects of dicyandiamide (DCD), nitrifier activity and liming. Soil cores containing a layer of urea were used to provide a one-dimensional approach and to facilitate sampling. A uniform layer of 2 g urea or urea + DCD was placed in the centre of a 20 cm-long soil core within PVC tubing. DCD was mixed with urea powder at 50 mg kg–1 urea and enrichment of soil with nitrifiers was accomplished by preincubating Conestogo silt loam with 50 mg NH 4 + -N kg–1 soil. Brookston clay (pH 5.7) was limited with CaCO3 to increase the pH to 7.3. The cores were incubated at 15°C and, after periods of 10, 20, 35 and 45 days, were separated into 1-cm sections. The distribution of N species was similar on each side of the urea layer at each sampling. The pH and NH 4 + (NH3) concentration were very high near the urea layer but decreased sharply with distance from it. DCD did not influence urea hydrolysis significantly. Liming of Brookston clay increased urea hydrolysis. The rate of urea hydrolysis was greater in Conestogo silt loam than limed Brookston clay. Nitrite accumulate was relatively small with all the treatments and occurred near the urea layer (0–4 cm) where pH and NH 4 + (NH3) concentration were high. The nitrification occurred in the zone where NH 4 + (NH3) concentration was below 1000µgN g–1 and soil pH was below 8.0 and 8.7 in Brookston and Conestogo soils, respectively. DCD reduced the nitrifier activity (NA) in soil thereby markedly inhibiting nitrification of NH 4 + . Nitrification was increased significantly with liming of the Brookston soil or nitrifier enrichment of the Conestogo soil. There was a significant increase in NA during the nitrification of urea-N. The (NO 2 + NO 3 )-N concentration peaks coincided with the NA peaks in the soil cores.A practical implication of this work is that large urea granules will not necessarily result in NO 2 phytotoxicity when applied near plants. A placement depth of about 5 cm below the soil surface may preclude NH3 loss from large urea granules. DCD is a potential nitrification inhibitor for use with large urea granules or small urea granules placed in nests.  相似文献   

19.
Transformation of calcium cyanamide and its inhibitory effect on urea nitrification was studied in some tropical soils. Three soils, from Onne, Mokwa and Samaru, representing different agro-climatological zones of Nigeria were incubated with calcium cyanamide, urea or a mixture of both for eight weeks at 30 °C and at field capacity moisture content. The recovery of inorganic N (NH 4 + plus NO 2 - plus NO 3 - )from calcium cyanamide varied from 64% to 87% in different soils. Most of the inorganic N accumulated was in NH 4 + form. Nitrification of the accumulated NH 4 + in all the soils was slow.Urea (75 mg N kg–1 soil) was completely nitrified within a week in the Samaru and Mokwa soils whereas in the Onne soil the rate of nitrification was slow. Addition of CaCN2 at the rate of 10 mg N kg–1 soil generally delayed ammonification of urea and nitrification was severely inhibited in all the soils. Addition of CaCN2 at the rate of 20 mg N kg–1 soil further reduced the ammonification of urea and completely inhibited the nitrification. High recovery of inorganic N from calcium cyanamide and its effective reduction of nitrification of urea make it suitable source of N for plants in the tropics, provided it is managed to avoid phyto-toxicity.  相似文献   

20.
Iron chlorosis in olive in relation to soil properties   总被引:5,自引:0,他引:5  
Chlorosis due to iron (Fe) deficiency is becoming severe in olive (Olea europaea L.) trees growing on some highly calcareous soils in southern Spain. We investigated the relationships between the incidence of Fe chlorosis in three olive varieties (`Hojiblanco', `Manzanillo' and `Picual') and soil properties. Leaf chlorophyll content, estimated by the mean value of three SPAD measurements during the growing season, was poorly correlated with soil carbonate content and reactivity. In contrast, it was significantly correlated with the clay content and with the amounts of Fe extracted with oxalate (Feox), citrate/ascorbate (Feca), and diethylendiaminepentaacetid acid (FeDTPA). This suggests that the content and reactivity of poorly crystalline Fe compounds play an important role in Fe nutrition. The three olive varieties did not differ significantly in their susceptibility to Fe chlorosis. Soil test critical levels separating chlorotic and non-chlorotic trees were 300 g clay kg–1 soil and 0.35 g Feox kg–1 soil.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号