首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 22 毫秒
1.
CCS embryonic stem (ES) cells possessing two mutant alleles (ry1r-/ry1r-) for the skeletal muscle ryanodine receptor (RyR) have been produced and injected subcutaneously into severely compromised immunodeficient mice to produce teratocarcinomas in which Ry1R expression is absent. Several primary fibroblast cell lines were isolated and subcloned from one of these tumors that contain the knockout mutation in both alleles and exhibit a doubling time of 18-24 h, are not contact growth inhibited, do not exhibit drastic morphological change upon serum reduction, and possess the normal complement of chromosomes. Four of these fibroblast clones were infected with a retrovirus containing the cDNA encoding myoD and a puromycin selection marker. Several (1-2 microg/ml) puromycin-resistant subclones from each initial cell line were expanded and examined for their ability to express myoD and to form multinucleated myotubes that express desmin and myosin upon removal of mitogens. One of these clones (1B5 cells) was selected on this basis for further study. These cells, upon withdrawal of mitogens for 5-7 d, were shown by Western blot analysis to express key triadic proteins, including skeletal triadin, calsequestrin, FK506-binding protein, 12 kD, sarco(endo)plasmic reticulum calcium-ATPase1, and dihydropyridine receptors. Neither RyR isoform protein, Ry1R (skeletal), Ry2R (cardiac), nor Ry3R (brain), were detected in differentiated 1B5 cells. Measurements of intracellular Ca2+ by ratio fluorescence imaging of fura-2-loaded cells revealed that differentiated 1B5 cells exhibited no responses to K+ (40 mM) depolarization, ryanodine (50-500 microM), or caffeine (20-100 mM). Transient transfection of the 1B5 cells with the full-length rabbit Ry1R cDNA restored the expected responses to K+ depolarization, caffeine, and ryanodine. Depolarization-induced Ca2+ release was independent of extracellular Ca2+, consistent with skeletal-type excitation-contraction coupling. Wild-type Ry1R expressed in 1B5 cells were reconstituted into bilayer lipid membranes and found to be indistinguishable from channels reconstituted from rabbit sarcoplasmic reticulum with respect to unitary conductance, open dwell times, and responses to ryanodine and ruthenium red. The 1B5 cell line provides a powerful and easily managed homologous expression system in which to study how Ry1R structure relates to function.  相似文献   

2.
The intensity of the fluorescence emission of the fluorescent 1,4-dihydropyridine (DHP) derivative felodipine increased upon binding to both isolated cardiac sarcolemma (SLM) and skeletal muscle sarcoplasmic reticulum (SR) preparations, the latter containing SR-transversal tubule junctional diads and triads. The fluorescence enhancement was due to the binding of felodipine to high-affinity (Kd's of 0.35 and 1.25 nM in cardiac SLM and skeletal SR, respectively) 1,4-dihydropyridine sites of the dihydropyridine receptor (DHPR), as evidenced in competition experiments with the DHP analog isradipine. In both cardiac SLM and SR, the felodipine fluorescence was sensitive to conformational changes of the DHPR, as diltiazem that binds to DHPR at a separate site altered the values of both the Kd and the Hill coefficient characteristic for felodipine binding. In skeletal muscle membranes containing intact TT-SR junctions, ryanodine, a specific ligand of the ryanodine receptor calcium release channel (RyRC), also induced changes in felodipine fluorescence, which was eliminated by detergent and high-salt treatment to solubilize the RyRC. These results suggest that i) felodipine fluorescence is useful to probe conformational changes of the DHPR and ii) coupled conformational changes between the DHPR and the RyRC in skeletal muscle indeed occur and could be monitored by measuring felodipine fluorescence.  相似文献   

3.
The single-channel activity of rabbit skeletal muscle ryanodine receptor (skeletal RyR) and dog cardiac RyR was studied as a function of cytosolic [Ca2+]. The studies reveal that for both skeletal and cardiac RyRs, heterogeneous populations of channels exist, rather than a uniform behavior. Skeletal muscle RyRs displayed two extremes of behavior: 1) low-activity RyRs (LA skeletal RyRs, approximately 35% of the channels) had very low open probability (Po < 0.1) at all [Ca2+] and remained closed in the presence of Mg2+ (2 mM) and ATP (1 mM); 2) high-activity RyRs (HA skeletal RyRs) had much higher activity and displayed further heterogeneity in their Po values at low [Ca2+] (< 50 nM), and in their patterns of activation by [Ca2+]. Hill coefficients for activation (nHa) varied from 0.8 to 5.2. Cardiac RyRs, in comparison, behaved more homogeneously. Most cardiac RyRs were closed at 100 nM [Ca2+] and activated in a cooperative manner (nHa ranged from 1.6 to 5.0), reaching a high Po (> 0.6) in the presence and absence of Mg2+ and ATP. Heart RyRs were much less sensitive (10x) to inhibition by [Ca2+] than skeletal RyRs. The differential heterogeneity of heart versus skeletal muscle RyRs may reflect the modulation required for calcium-induced calcium release versus depolarization-induced Ca2+ release.  相似文献   

4.
Ryanodine receptors (RyRs), a class of intracellular calcium release channels, are the largest ion channels known. Recently, cryoelectron microscopy and image reconstructions of isolated receptors have shown that most of the protein mass forms a porous, multidomain cytoplasmic assembly. Evidence is mounting that suggests that the cytoplasmic assembly communicates with the transmembrane regions over distances of 100 or greater. RyRs are centrally important in excitation-contraction coupling, which occurs at specialized regions where the sarcoplasmic reticulum, containing the RyRs, and the plasma membrane/transverse-tubule system form junctions. Numerous proteins are present at these junctions, some of which interact directly with the RyR.  相似文献   

5.
Imaging elementary events of calcium release in skeletal muscle cells   总被引:2,自引:0,他引:2  
In skeletal muscle cells, calcium release to trigger contraction occurs at triads, specialized junctions where sarcoplasmic reticulum channels are opened by voltage sensors in the transverse tubule. Scanning confocal microscopy was used in cells under voltage clamp to measure the concentration of intracellular calcium, [Ca2+]i, at individual triads and [Ca2+]i gradients that were proportional to calcium release. In cells stimulated with small depolarizations, the [Ca2+]i gradients broke down into elementary events, corresponding to single-channel currents of about 0.1 picoampere. Because these events were one-tenth to one-fifth the size of calcium sparks (elementary release events of cardiac muscle), skeletal muscle control mechanisms appear to be fundamentally different.  相似文献   

6.
1. The effect of diltiazem on isolated sarcoplasmic reticulum (SR) from rabbit skeletal muscle was studied. To observe calcium movement into and out of the SR, a fluorescent chelate probe technique with chlortetracycline (CTC) as a reagent was employed. 2. Tris-ATP-induced calcium accumulation by the isolated SR was associated with a rise in the CTC fluorescence. The effect of ATP was dose dependent. 3. Diltiazem (6 x 10(-4)M, 2 x 10(-3)M) prevented ATP-induced calcium accumulation by the SR. 4. Addition of EGTA to the media chelates external calcium and caused calcium release that can be reversed by further addition of calcium chloride. Similarly diltiazem caused a rapid release of accumulated calcium from the SR, which is not reversed by the addition of calcium chloride. 5. It seems that the effect of diltiazem may be related to SR membrane-bound calcium being available for release.  相似文献   

7.
Triadin, a calsequestrin-anchoring transmembrane protein of the sarcoplasmic reticulum (SR), was successfully purified from the heavy fraction of SR (HSR) of rabbit skeletal muscle with an anti-triadin immunoaffinity column. Since depletion of triadin from solubilized HSR with the column increased the [3H]ryanodine binding activity, we tested a possibility of triadin for a negative regulator of the ryanodine receptor/Ca2+ release channel (RyR). Purified triadin not only inhibited [3H]ryanodine binding to the solubilized HSR but also reduced openings of purified RyR incorporated into the planar lipid bilayers. On the other hand, calsequestrin, an endogenous activator of RyR [Kawasaki and Kasai (1994) Biochem. Biophys. Res. Commun. 199, 1120-1127; Ohkura et al. (1995) Can. J. Physiol. Pharmacol. 73, 1181-1185] potentiated [3H]ryanodine binding to the solubilized HSR. Ca2+ dependency of [3H]ryanodine binding to the solubilized HSR was reduced by triadin, whereas that was enhanced by calsequestrin. Interestingly, [3H]ryanodine binding to the solubilized HSR potentiated by calsequestrin was reduced by triadin. Immunostaining with anti-triadin antibody proved that calsequestrin inhibited the formation of oligomeric structure of triadin. These results suggest that triadin inhibits the RyR activity and that RyR is regulated by both triadin and calsequestrin, probably through an interaction between them. In this paper, triadin has been first demonstrated to have an inhibitory role in the regulatory mechanism of the RyR.  相似文献   

8.
The release of intracellular calcium (Ca2+) via either inositol 1,4, 5-trisphosphate receptors (IP3R) or ryanodine receptors (RyR) activates a wide variety of signaling pathways in virtually every type of cell. In the present study we demonstrate that at early stages of development IP3R mRNA and functional IP3-gated Ca2+ release channels are widely expressed in virtually all tissues in murine embryos. As organogenesis proceeds, more specialized RyR channels are expressed in many cell types and the triggering mechanisms for intracellular Ca2+ release become more diverse to include IP3-dependent and voltage-dependent and Ca2+-induced Ca2+ release. As development proceeds virtually all cell types continue to express IP3R channels but in excitable cells including skeletal and cardiac muscles the major Ca2+ release channels are RyRs. This developmental switch from predominantly IP3-mediated to both IP3-mediated and IP3-independent pathways for intracellular Ca2+ release is consistent with data showing that IP3R plays an important regulatory role in cellular proliferation and apoptosis, whereas RyR is required for other cellular functions including muscle contraction.  相似文献   

9.
The Bio 14.6 Cardiomyopathic Syrian Hamster (CMH) has an autosomal recessive disease characterized by intracellular calcium overload, cardiac and skeletal myopathies and premature death from congestive heart failure. Early treatment of these animals with the calcium antagonist, verapamil (V), prevents the development of the disease. We have previously provided evidence supporting a specific defect in the ryanodine-sensitive SR calcium release channel (SRCRC) in CMH. We now provide physiologic and biochemical evidence that V modulates SRCRC. Papillary muscles prepared from F1B control hamsters (F1B) revealed an enhanced inotropic responsiveness to V and ryanodine (R) with age, not seen with CMH. CMH papillary muscles demonstrated paradoxical positive inotropic effects of V and R not shared with F1B. The positive inotropic effects of V and R were not additive. V enhanced the affinity (decreased KD) of [3H]ryanodine binding to cardiac membranes. Thus, V may prevent the overt manifestations of genetic disease in CMH by modulating a defective ryanodine-sensitive SR release channel.  相似文献   

10.
Many cells coordinate their activities by transmitting rises in intracellular calcium from cell to cell. In nonexcitable cells, there are currently two models for intercellular calcium wave propagation, both of which involve release of inositol trisphosphate (IP3)- sensitive intracellular calcium stores. In one model, IP3 traverses gap junctions and initiates the release of intracellular calcium stores in neighboring cells. Alternatively, calcium waves may be mediated not by gap junctional communication, but rather by autocrine activity of secreted ATP on P2 purinergic receptors. We studied mechanically induced calcium waves in two rat osteosarcoma cell lines that differ in the gap junction proteins they express, in their ability to pass microinjected dye from cell to cell, and in their expression of P2Y2 (P2U) purinergic receptors. ROS 17/2.8 cells, which express the gap junction protein connexin43 (Cx43), are well dye coupled, and lack P2U receptors, transmitted slow gap junction-dependent calcium waves that did not require release of intracellular calcium stores. UMR 106-01 cells predominantly express the gap junction protein connexin 45 (Cx45), are poorly dye coupled, and express P2U receptors; they propagated fast calcium waves that required release of intracellular calcium stores and activation of P2U purinergic receptors, but not gap junctional communication. ROS/P2U transfectants and UMR/Cx43 transfectants expressed both types of calcium waves. Gap junction-independent, ATP-dependent intercellular calcium waves were also seen in hamster tracheal epithelia cells. These studies demonstrate that activation of P2U purinergic receptors can propagate intercellular calcium, and describe a novel Cx43-dependent mechanism for calcium wave propagation that does not require release of intracellular calcium stores by IP3. These studies suggest that gap junction communication mediated by either Cx43 or Cx45 does not allow passage of IP3 well enough to elicit release of intracellular calcium stores in neighboring cells.  相似文献   

11.
Malignant hyperthermia (MH) is a potentially fatal, inherited skeletal muscle disorder in humans and pigs that is caused by abnormal regulation of Ca2+ release from the sarcoplasmic reticulum (SR). MH in pigs is associated with a single mutation (Arg615Cys) in the SR ryanodine receptor (RyR) Ca2+ release channel. The way in which this mutation leads to excessive Ca2+ release is not known and is examined here. Single RyR channels from normal and MH-susceptible (MHS) pigs were examined in artificial lipid bilayers. High cytoplasmic (cis) concentrations of either Ca2+ or Mg2+ (>100 microM) inhibited channel opening less in MHS RyRs than in normal RyRs. This difference was more prominent at lower ionic strength (100 mM versus 250 mM). In 100 mM cis Cs+, half-maximum inhibition of activity occurred at approximately 100 microM Mg2+ in normal RyRs and at approximately 300 microM Mg2+ in MHS RyRs, with an average Hill coefficient of approximately 2 in both cases. The level of Mg2+ inhibition was not appreciably different in the presence of either 1 or 50 microM activating Ca2+, showing that it was not substantially influenced by competition between Mg2+ and Ca2+ for the Ca2+ activation site. Even though the absolute inhibitory levels varied widely between channels and conditions, the inhibitory effects of Ca2+ and Mg2+ were virtually identical for the same conditions in any given channel, indicating that the two cations act at the same low-affinity inhibitory site. It seems likely that at the cytoplasmic [Mg2+] in vivo (approximately 1 mM), this Ca2+/Mg2+-inhibitory site will be close to fully saturated with Mg2+ in normal RyRs, but less fully saturated in MHS RyRs. Therefore MHS RyRs should be more sensitive to any activating stimulus, which would readily account for the development of an MH episode.  相似文献   

12.
Excitation-contraction uncoupling has been identified as a mechanism underlying skeletal muscle weakness in aging mammals (sarcopenia). The basic mechanism for excitation-contraction uncoupling is a larger number of ryanodine receptors (RyR1) uncoupled to dihydropyridine receptors (DHPRs) (Delbono, O., O'Rourke, K. S., and Ettinger, W. H. (1995) J. Membr. Biol. 148, 211-222). In the present study, we used transgenic mice overexpressing human insulin-like growth factor-1 exclusively in skeletal muscle to test the hypothesis that a high concentration of IGF-1 prevents age-related decreases in DHPR number and in muscle force. Transgenic mice express 10-20-fold higher IGF-1 concentrations than nontransgenic mice at all ages (1-24 months). The number of DHPRs is 50-100% higher, and the DHPR/RyR1 ratio is 40% higher in transgenic soleus (predominantly type I fiber muscles), extensor digitorum longus (predominantly type II fiber muscles), and the pool of type I and type II fiber muscles than in nontransgenic young (6 months), adult (12 months), and old (24 months) mice. Furthermore, no age-related changes in DHPRs and the DHPR/RyR1 ratio were observed in transgenic muscles. The specific single twitch and tetanic muscle force in old transgenic soleus and extensor digitorum longus muscles are 50% higher than in old nontransgenic muscles. Taken together, these results support the concept that IGF-1- dependent prevention of age-related decline in DHPR expression is associated with stronger muscle contraction in older transgenic mice.  相似文献   

13.
1. Dithiothreitol (DTT), at 50-100 mM, induced a phasic reversible contraction of frog skeletal muscle. 2. Exposure of single fibers to nifedipine (20 microM), an L-type Ca2+ antagonist, blocked the twitch and tetanus tensions but never affected the DTT-induced contraction. 3. DTT also produced a phasic contraction in fibers where voltage sensors were inactivated in the presence of high K+ concentration (190 mM). 4. A fiber was mechanically skinned after observation of DTT-induced contraction. The skinned fiber contracted in response to a DTT concentration similar to that required to produce contraction in intact fibers before skinning. 5. In skinned fibers, DTT, at 100 or 200 mM, inhibited the accumulation of Ca2+ by SR, but not Ca2+ ATPase activity. 6. These results suggest that a high concentration of DTT triggers Ca2+ efflux from the SR through action on the Ca2+ release channel and/or closely associated proteins, such as triadin and FK-506 binding protein.  相似文献   

14.
Malignant hyperthermia (MH) results from a defect of calcium release control in skeletal muscle that is often caused by point mutations in the ryanodine receptor gene (RYR1). In malignant hyperthermia-susceptible (MHS) muscle, calcium release responds more sensitively to drugs such as halothane and caffeine. In addition, experiments on the porcine homolog of malignant hyperthermia (mutation Arg615Cys in RYR1) indicated a higher sensitivity to membrane depolarization. Here, we investigated depolarization-dependent calcium release under voltage clamp conditions in human MHS muscle. Segments of muscle fibers dissected from biopsies of the vastus lateralis muscle of MHN (malignant hyperthermia negative) and MHS subjects were voltage-clamped in a double vaseline gap system. Free calcium was determined with the fluorescent indicator fura-2 and converted to an estimate of the rate of SR calcium release. Both MHN and MHS fibers showed an initial peak of the release rate, a subsequent decline, and rapid turn-off after repolarization. Neither the kinetics nor the voltage dependence of calcium release showed significant deviations from controls, but the average maximal peak rate of release was about threefold larger in MHS fibers.  相似文献   

15.
There is increasing evidence that Ca2+ release from sarcoplasmic reticulum (SR) of mammalian skeletal muscle is regulated or modified by several factors including ionic composition of the myoplasm. We have studied the effect of Cl- on the release of Ca2+ from the SR of rabbit skeletal muscle in both skinned psoas fibers and in isolated terminal cisternae vesicles. Ca2+ release from the SR in skinned fibers was inferred from increases in isometric tension and the amount of release was assessed by integrating the area under each tension transient. Ca2+ release from isolated SR was measured by rapid filtration of vesicles passively loaded with 45Ca2+. Ca2+ release from SR was stimulated in both preparations by exposure to a solution containing 191 mm choline-Cl, following pre-equilibration in Ca2+-loading solution that had propionate as the major anion. Controls using saponin (50 microg/ml), indicated that the release of Ca2+ was due to direct action of Cl- on the SR rather than via depolarization of T-tubules. Procaine (10 mM) totally blocked Cl-- and caffeine-elicited tension transients recorded using loading and release solutions having ([Na+] + [K+]) x [Cl-] product of 6487.69 mm2 and 12361.52 mm2, respectively, and blocked 60% of Ca2+ release in isolated SR vesicles. Surprisingly, procaine had only a minor effect on tension transients elicited by Cl- and caffeine together. The data from both preparations suggests that Cl- induces a relatively small amount of Ca2+ release from the SR by activating receptors other than RYR-1. In addition, Cl- may increase the Ca2+ sensitivity of RYR-1, which would then allow the small initial release of Ca2+ to facilitate further release of Ca2+ from the SR by Ca2+-induced Ca2+ release.  相似文献   

16.
A number of studies have reported that the activity of the ryanodine-sensitive calcium release channel (ryanodine receptor) in the junctional sarcoplasmic reticulum of skeletal and cardiac muscle can be modulated by protein phosphorylation-dephosphorylation through activation of endogenous protein kinases and/or by addition of exogenous protein kinases and protein phosphatases. In this study, we have investigated the possibility that protein phosphatase-1 (PP1) is targeted to the junctional sarcoplasmic reticulum by the direct isolation of PP1-binding proteins on PP1-Sepharose affinity columns. The results show that the ryanodine receptor of both skeletal and cardiac muscle bind to this affinity support, and are released at supraphysiological salt concentrations in a relatively pure state. Reciprocal experiments demonstrated that PP1 binds to the immobilized muscle ryanodine receptor. The direct binding of PP1 to the ryanodine receptor was supported by the finding that tryptic fragments of the receptor were retained on PP1-Sepharose. The ability of PP1 to dephosphorylate the ryanodine receptor that was phosphorylated by protein kinase A was also demonstrated. These studies show that PP1 is targeted to the junctional sarcoplasmic reticulum by binding to the ryanodine receptor, and provide a biochemical basis for the possibility that PP1 may play a role in the regulation of calcium flux via protein phosphorylation-dephosphorylation mechanisms.  相似文献   

17.
An immortal, cloned cell line (RCMH), obtained from human skeletal muscle was established in our laboratory and shown to express muscle specific proteins. We measured ligand binding to ion channels, ion currents using whole cell patch clamp and intracellular calcium both in cells grown in complete media and in cells grown for 4-40 days in media supplemented with hormones and nutrients (differentiating media). Markers for differentiated muscle, such as the muscle isoform of creatine kinase and the cytoskeletal proteins alpha-actinin, alpha-sarcomeric actin, myosin and titin were present in early stages. Receptors for gamma toxin from Tityus serrulatus scorpion venom, a specific modulator for voltage dependent sodium channels, were present (0.9-1.0 pmol mg-1 protein) during stage 1 (0-6 days in culture with differentiating media) and increased by 50% in stage 3 (more than 10 days in differentiating media). High and low affinity dihydropyridine receptors present in stage 1 convert into a single type of high affinity receptors in stage 3. Both intracellular calcium release and InsP3 receptors were evident in stage 1 but ryanodine receptors were expressed only in stage 3. RCMH cells showed no voltage sensitive currents in stage 1. Between 7 and 10 days in differentiating media (stage 2), an outward potassium current was observed. Small inward currents appeared only in stage 3; we identified both tetrodotoxin sensitive and tetrodotoxin resistant sodium currents as well as calcium currents. This pattern is consistent with the expression of voltage dependent calcium release before appearance of both the action potential and ryanodine receptors.  相似文献   

18.
3H-Labeled 9-methyl-7-bromoeudistomin D ([3H] MBED), the most powerful inducer of Ca2+ release from sarcoplasmic reticulum (SR), was successfully prepared with a high specific activity of 10.2 Ci/mmol. [3H]MBED bound to terminal cisternae (TC) of skeletal muscle SR in a replacable and saturable manner, indicating the existence of its specific binding site. Caffeine inhibited the [3H]MBED binding to the TC-SR membranes from skeletal muscle with an IC50 value of 0.8 mM, in close agreement with a concentration that causes Ca2+ release from SR. Scatchard analysis gave values of KD = 40 nM and Bmax = 10 pmol/mg protein. The KD value was increased by caffeine, while that of Bmax was not changed, indicating a competitive mode of inhibition. Adenosine 5'-(beta, gamma-methylene)triphosphate enhanced [3H]MBED binding, but ryanodine and Ca2+ did not affect it. [3H]MBED binding to TC-SR membranes was inhibited by procaine, a representative blocker of Ca(2+)-induced Ca2+ release channels, whereas that was not changed by Mg2+, suggesting that procaine but not Mg2+ may exert its inhibitory effect on Ca(2+)-induced Ca2+ release by affecting the caffeine-binding sites. These results suggest that MBED shares the same binding site as that of caffeine in TC-SR. The [3H]MBED is the first radiolabeled ligand for caffeine-binding sites in Ca2+ release channels and thus may provide an essential biochemical tool for elucidating this site.  相似文献   

19.
Eucaryotic porin channels or voltage-dependent anion channels (VDACs) are expressed in the outer mitochondrial membranes and in the plasmalemma of mammalian cells. Subfractions of sarcoplasmatic reticulum (SR) obtained from rabbit skeletal muscle display type-1 porin channels in transverse tubuli (TT) when analysed by immunoblot analysis with type-1 porin specific monoclonal antibodies. These data are in agreement with our recent proposal suggesting the presence of porin channels in non-mitochondrial eucaryotic membranes.  相似文献   

20.
Extremely large protein complexes involved in the Ca2+-regulatory system of the excitation-contraction-relaxation cycle have been identified in skeletal muscle, i.e. clusters of the Ca2+-binding protein calsequestrin, apparent tetramers of Ca2+-ATPase pump units and complexes between the transverse-tubular alpha1-dihydropyridine receptor and ryanodine receptor Ca2+-release channel tetramers of the sarcoplasmic reticulum. While receptor interactions appear to be crucial for signal transduction during excitation-contraction coupling, avoidance of passive disintegration of junctional complexes and stabilization of receptor interactions may be mediated by disulfide-bonded clusters of triadin. Oligomerization of Ca2+-release, Ca2+-sequestration and Ca2+-uptake complexes appear to be an intrinsic property of these muscle membrane proteins. During chronic low-frequency stimulation, the expression of triad receptors is decreased while conditioning has only a marginal effect on Ca2+-binding proteins. In contrast, muscle stimulation induces a switch from the fast-twitch Ca2+-ATPase to its slow-twitch/cardiac isoform. These alterations in Ca2+-handling might reflect early functional adaptations to electrical stimulation. Studying Ca2+-homeostasis in transformed muscles is important regarding the evaluation of new clinical applications such as dynamic cardiomyoplasty. Studies of Ca2+-handling in skeletal muscle fibers have not only increased our understanding of muscle regulation, but have given important insights into the molecular pathogenesis of malignant hyperthermia, hypokalemic periodic paralysis and Brody disease.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号