首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Ambipolar organic field‐effect transistors (OFETs) are produced, based on organic heterojunctions fabricated by a two‐step vacuum‐deposition process. Copper phthalocyanine (CuPc) deposited at a high temperature (250 °C) acts as the first (p‐type component) layer, and hexadecafluorophthalocyaninatocopper (F16CuPc) deposited at room temperature (25 °C) acts as the second (n‐type component) layer. A heterojunction with an interpenetrating network is obtained as the active layer for the OFETs. These heterojunction devices display significant ambipolar charge transport with symmetric electron and hole mobilities of the order of 10–4 cm2 V–1 s–1 in air. Conductive channels are at the interface between the F16CuPc and CuPc domains in the interpenetrating networks. Electrons are transported in the F16CuPc regions, and holes in the CuPc regions. The molecular arrangement in the heterojunction is well ordered, resulting in a balance of the two carrier densities responsible for the ambipolar electrical characteristics. The thin‐film morphology of the organic heterojunction with its interpenetrating network structure can be controlled well by the vacuum‐deposition process. The structure of interpenetrating networks is similar to that of the bulk heterojunction used in organic photovoltaic cells, therefore, it may be helpful in understanding the process of charge collection in organic photovoltaic cells.  相似文献   

2.
We found that a 1:1 volume ratio mixed film formed by co-evaporation of 4,4,4-tris(N-3-methylphenyl-N-phenylamino) triphenylamine (m-MTDATA) and copper hexadecafluorophthalocyanine (F16CuPc) showed a board optical absorption band from 900 to 1500 nm not observed from the two constituting materials. The new IR absorption band is attributed to the charge-transfer complex formed by electron transfer from m-MTDATA to F16CuPc upon intimate contact. By using the mixed film as an active layer, we demonstrate an organic photovoltaic device (OPV) which can generate electric power from photons with longer than 1300 nm wavelength.  相似文献   

3.
4.
Hybrid bulk heterojunction solar cells based on nanocrystalline TiO2 (nc‐TiO2) nanorods capped with trioctylphosphine oxide (TOPO) and regioregular poly(3‐hexylthiophene) (P3HT) are processed from solution and characterized in order to relate the device function (optical absorption, charge separation, and transport and photovoltaic properties) to active‐layer properties and device parameters. Annealing the blend films is found to greatly improve the polymer–metal oxide interaction at the nc‐TiO2/P3HT interface, resulting in a six‐fold increase of the charge separation yield and improved photovoltaic device performance under simulated solar illumination. In addition, the influence of the organic ligand at the nc‐TiO2 particle surface is found to be crucial for charge separation. Ligand‐exchange procedures applied on the TOPO‐capped nc‐TiO2 nanorods with an amphiphilic ruthenium‐based dye are found to further improve the charge‐separation yield at the polymer–nanocrystal interface. However, the poor photocurrents generated in the hybrid blend devices, before and after ligand exchange, suggest that transport within or between nanoparticles limits performance. By comparison with other donor–acceptor bulk heterojunction systems, we conclude that charge transport in the nc‐TiO2:P3HT blend films is limited by the presence of an intrinsic trap distribution mainly associated with the nc‐TiO2 particles.  相似文献   

5.
Time‐resolved optical spectroscopy is used to investigate exciton‐charge annihilation reactions in blended films of organic semiconductors. In donor–acceptor blends where charges are photogenerated via excitons, pulsed optical excitation can deliver a sufficient density of temporally overlapping excitons and charges for them to interact. Transient absorption spectroscopy measurements demonstrate clear signatures of exciton‐charge annihilation reactions at excitation densities of ≈1018 cm?3. The strength of exciton‐charge annihilation is consistent with a resonant energy transfer mechanism between fluorescent excitons and resonantly absorbing charges, which is shown to generally be strong in organic semiconductors. The extent of exciton‐charge annihilation is very sensitive not only to fluence but also to blend morphology, becoming notably strong in donor–acceptor blends with nanomorphologies optimized for photovoltaic operation. The results highlight both the value of transient optical spectroscopy to interrogate exciton‐charge annihilation reactions and the need to recognize and account for annihilation reactions in other transient optical investigations of organic semiconductors.  相似文献   

6.
Organic photovoltaic cells based on ternary blends of materials with complementary properties represent an approach to improve the photon-absorption and/or charge transport within the devices. However, the more complex nature of the ternary system, i.e. in diversity of materials' properties and morphological features, complicates the understanding of the processes behind such optimizations. Here, organic photovoltaic cells with wider absorption spectrum composed of two electron-donor polymers, F8T2, poly(9,9-dioctylfluorene-alt-bithiophene), and PTB7, poly([4,8-bis[(2′-ethylhexyl)oxy]benzo[1,2-b:4,5-b′]dithiophene-2,6-diyl][3-fluoro-2-[(2′-ethylhexyl)carbonyl]thieno[3,4-b]thiophenediyl]), mixed with [6,6]-phenyl-C61-butyric acid methyl ester (PC61BM) are investigated. We demonstrate an improvement of 25% in power conversion efficiency in comparison with the most efficient binary blend control devices. The active layers of these ternary cells exhibit gross phase separation, as determined by Atomic Force Microscopy (AFM) and Synchrotron-based Scanning Transmission X-ray Microscopy (STXM).  相似文献   

7.
Potential barrier formation during the deposition of ultrathin coatings of copper phthalocyanine (CuPc) and hexadecafluoro-copper-phthalocyanine (F16CuPc) on the surface of polycrystalline tin dioxide and during the deposition of F16CuPc coatings over a CuPc film is studied. A photoinduced change in the surface potential of the prepared structures upon exposure to light in the visible wavelength region is detected. The surface photovoltage of the studied organic films has a positive sign with respect to the substrate, its spectral dependences correspond to the absorption spectra of the organic materials CuPc and F16CuPc. Surface potential measurements are performed using a probe beam of low-energy electrons, based on the total current spectroscopy technique. A total decrease in the work function by 0.2 eV is detected during the deposition of a CuPc film up to 8 nm in thickness on a SnO2 substrate; in the case of the F16CuPc/SnO2 interface, an increase in the work function by 0.55 eV is detected. At the initial deposition stage, at organic film thicknesses of up to 1.5 nm, the interfacial potential barrier corresponded to electron density transfer from the organic film to the substrate in both cases of CuPc/SnO2 and F16CuPc/SnO2. It is assumed that the photoinduced change in the surface potential is caused by charge-carrier separation in a boundary region up to 1.5 nm thick.  相似文献   

8.
Ambipolar thin‐film transistors based on a series of air‐stable, solution‐processed blends of an n‐type polymer poly(benzobisimidazobenzophenanthroline) (BBL) and a p‐type small molecule, copper phthalocyanine (CuPc) are demonstrated, where all fabrication and measurements are performed under ambient conditions. The hole mobilities are in the range of 6.0 × 10–6 to 2.0 × 10–4 cm2 V–1 s–1 and electron mobilities are in the range of 2.0 × 10–6 to 3.0 × 10–5 cm2 V–1 s–1, depending on the blend composition. UV‐vis spectroscopy and electron diffraction show crystallization of CuPc in the metastable α‐crystal form within the semicrystalline BBL matrix. These CuPc domains develop into elongated ribbon‐like crystalline nanostructures when the blend films are processed in methanol, but not when they are processed in water. On methylene chloride vapor annealing of the blend films, a phase transformation of CuPc from the α‐form to the β‐form is observed, as shown by optical absorption spectroscopy and electron diffraction. Ambipolar charge transport is only observed in the blend films where CuPc crystallized in the elongated ribbon‐like nanostructures (α‐form). Ambipolar behavior is not observed with CuPc in the β‐polymorph. Unipolar hole mobilities as high as 2.0 × 10–3 cm2 V–1 s–1 are observed in these solution‐processed blend field‐effect transistors (FETs) on prolonged treatment in methanol, comparable to previously reported hole mobilities in thermally evaporated CuPc FETs. These results show that ambipolar charge transport and carrier mobilities in multicomponent organic semiconductors are intricately related to the phase‐separated nanoscale and crystalline morphology.  相似文献   

9.
The charge transport in pristine poly(3‐hexylthiophene) (P3HT) films and in photovoltaic blends of P3HT with [6,6]‐phenyl C61 butyric acid methyl ester (PCBM) is investigated to study the influence of charge‐carrier transport on photovoltaic efficiency. The field‐ and temperature dependence of the charge‐carrier mobility in P3HT of three different regioregularities, namely, regiorandom, regioregular with medium regioregularity, and regioregular with very high regioregularity are investigated by the time‐of‐flight technique. While medium and very high regioregularity polymers show the typical absorption features of ordered lamellar structures of P3HT in the solid state even without previous annealing, films of regiorandom P3HT are very disordered as indicated by their broad and featureless absorption. This structural difference in the solid state coincides with partially non‐dispersive transport and hole mobilities µh of around 10?4 and 10?5 cm2 V?1 s?1 for the high and medium regioregularity P3HT, respectively, and a slow and dispersive charge transport for the regiorandom P3HT. Upon blending the regioregular polymers with PCBM, the hole mobilities are typically reduced by one order of magnitude, but they do not significantly change upon additional post‐spincasting annealing. Only in the case of P3HT with high regioregularity are the electron mobilities similar to the hole mobilities and the charge transport is, thus, balanced. Nonetheless, devices prepared from both materials exhibit similar power conversion efficiencies of 2.5%, indicating that very high regioregularity may not substantially improve order and charge‐carrier transport in P3HT:PCBM and does not lead to significant improvements in the power‐conversion efficiency of photovoltaic devices.  相似文献   

10.
In this work, electrostatic force microscopy (EFM) and conductive atomic force microscopy (C-AFM) are applied to perform high-resolution electrical characterisation of organic photovoltaic films. These films are composed of the C60-derivative PCBM blended with hole conductive conjugated polymers PPV derivatives or P3HT. It is demonstrated that both EFM and C-AFM are able to electrically evidence phase separation in the blends, suggesting in addition higher density of carriers along interfaces. Correlation between the EFM contrast and the photovoltaic properties of the blends was observed. Local spectroscopy (I-V curves) completes the C-AFM investigations, analysing charge transport mechanisms in the P3HT:PCBM blend. Significant modifications of the local electrical properties of P3HT are shown to occur upon blending. Space charge limited current is evidenced in the blend and a hole mobility of 1.7 × 10−2 cm2 V−1 s−1 is determined for P3HT.  相似文献   

11.
The electronic structure between organic and solid electrode is a crucial issue in obtaining high-performance organic-based electronic devices (e.g. organic photovoltaic and organic light-emitting diode). In this communication we report that the electronic properties of phthalocyanine CuPc/graphene interface can be modified by sequential deposition of hexadecafluorophthalocyaninatocopper (F16CuPc) on the CuPc/graphene interface due to the interactions of F16CuPc with graphene. This method can be used to alter the energy barrier heights between graphene Dirac point and organic’s highest occupied molecular orbital and lowest unoccupied molecular orbital at the organic/graphene interface by simple deposition of another electron acceptor or donor layer on this interface.  相似文献   

12.
For organic photovoltaic (OPV) cells based on the bulk heterojunction (BHJ) structure, it remains challenging to rationally control the degree of phase separation and percolation within blends of donors and acceptors to secure optimal charge separation and transport. Reported is a bottom‐up, supramolecular approach to BHJ OPVs wherein tailored hydrogen bonding (H‐bonding) interactions between π‐conjugated electron donor molecules encourage formation of vertically aligned donor π‐stacks while simultaneously suppressing lateral aggregation; the programmed arrangement facilitates fine mixing with fullerene acceptors and efficient charge transport. The approach is illustrated using conventional linear or branched quaterthiophene donor chromophores outfitted with terminal functional groups that are either capable or incapable of self‐complementary H‐bonding. When applied to OPVs, the H‐bond capable donors yield a twofold enhancement in power conversion efficiency relative to the comparator systems, with a maximum external quantum efficiency of 64%. H‐bond promoted assembly results in redshifted absorption (in neat films and donor:C60 blends) and enhanced charge collection efficiency despite disparate donor chromophore structure. Both features positively impact photocurrent and fill factor in OPV devices. Film structural characterization by atomic force microscopy, transmission electron microscopy, and grazing incidence wide angle X‐ray scattering reveals a synergistic interplay of lateral H‐bonding interactions and vertical π‐stacking for directing the favorable morphology of the BHJ.  相似文献   

13.
Highly crystalline thin films in organic semiconductors are important for applications in high‐performance organic optoelectronics. Here, the effect of grain boundaries on the Hall effect and charge transport properties of organic transistors based on two exemplary benchmark systems is elucidated: (1) solution‐processed blends of 2,7‐dioctyl[1]benzothieno[3,2‐b][1]benzothiophene (C8‐BTBT) small molecule and indacenodithiophene‐benzothiadiazole (C16IDT‐BT) conjugated polymer, and (2) large‐area vacuum evaporated polycrystalline thin films of rubrene (C42H28). It is discovered that, despite the high field‐effect mobilities of up to 6 cm2 V?1 s?1 and the evidence of a delocalized band‐like charge transport, the Hall effect in polycrystalline organic transistors is systematically and significantly underdeveloped, with the carrier coherence factor α < 1 (i.e., yields an underestimated Hall mobility and an overestimated carrier density). A model based on capacitively charged grain boundaries explaining this unusual behavior is described. This work significantly advances the understanding of magneto‐transport properties of organic semiconductor thin films.  相似文献   

14.
Exciton dissociation is a key step for the light energy conversion to electricity in organic photovoltaic (OPV) devices. Here, excitonic dissociation pathways in the high‐performance, low bandgap “in‐chain donor–acceptor” polymer PTB7 by transient optical absorption (TA) spectroscopy in solutions, neat films, and bulk heterojunction (BHJ) PTB7:PC71BM (phenyl‐C71‐butyric acid methyl ester) films are investigated. The dynamics and energetics of the exciton and intra‐/intermolecular charge separated states are characterized. A distinct, dynamic, spectral red‐shift of the polymer cation is observed in the BHJ films in TA spectra following electron transfer from the polymer to PC71BM, which can be attributed to the time evolution of the hole–electron spatial separation after exciton splitting. Effects of film morphology are also investigated and compared to those of conjugated homopolymers. The enhanced charge separation along the PTB7 alternating donor–acceptor backbone is understood by intramolecular charge separation through polarized, delocalized excitons that lower the exciton binding energy. Consequently, ultrafast charge separation and transport along these polymer backbones reduce carrier recombination in these largely amorphous films. This charge separation mechanism explains why higher degrees of PCBM intercalation within BHJ matrices enhances exciton splitting and charge transport, and thus increase OPV performance. This study proposes new guidelines for OPV materials development.  相似文献   

15.
《Organic Electronics》2014,15(8):1724-1730
Molecular orientation and packing motif governs charge-transport property of organic semiconductor films, especially for planar small molecules. We analyze the surface-induced orientation of copper phthalocyannine (CuPc) molecules deposited on graphene or poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) covered indium-tin-oxide (PEDOT:PSS/ITO). The CuPc films deposited on graphene are templated with preferential face-on stacking, whereas the molecules on PEDOT:PSS/ITO crystallize with edge-on ordering. Static current–voltage measurement and small-signal impedance spectroscopy are combined to elucidate the structural impact on the electrical response when those films are part of a rectifying diode. The graphene-templated diode shows enhanced out-of-plane hole conduction as compared to the diode with a PEDOT:PSS/ITO contact. Equivalent circuits describing charge injection and transport properties are proposed.  相似文献   

16.
We report a new approach of improving the solar cells efficiency based on ultrathin perovskite films. We propose the addition of CuPc compound to perovskite active layer for enhanced charge generation and transfer process by charge transfer process between CuPc and perovskite. The performance of the devices with and without addition of CuPc was studied in respect to thickness of the active layer. The thickness was varied by the change of the spin coating speed in the range of 4000, 7000 and 10000 rpm, different concentration of CuPc also been studied. The process of charge carrier recombination, crystallinity and Raman characteristics of the obtained films was studied. The perovskite device with an active layer of MAPbI3 mixed with CuPc spin coated with the speed of 10000 rpm with thickness of about 150 nm demonstrated the efficiency of 12.7%. The ultrathin mixed perovskite film (10000 rpm perovskite film of 15% CuPc) based device presents 33% thickness and 85% efficiency of common pure perovskite device (4000 rpm pure perovskite film).  相似文献   

17.
The challenges to realizing diode lasers based on thin films of organic semiconductors are primarily related to low charge carrier mobility in these materials. This not only limits the thickness of organic films to ⩽100 nm in electrically pumped devices, but it also leads to changes in the optical properties of organic films induced by the large number of carriers trapped in the materials subjected to an intense electrical excitation. We describe organic waveguide laser structures composed of thin organic films and transparent indium-tin-oxide electrodes. These waveguides allow for efficient injection of an electrical current into the organic layers and provide for low optical losses required in a laser. The changes in the optical properties of organic thin films induced by electrical excitation are studied using electroluminescence and pump and probe spectroscopy. Induced transparency and absorption observed in the organic materials may be related to triplet excitons or trapped charge carriers. Pump-induced absorption is also observed in organic films under quasi-CW optical excitation. These effects must be taken into account both in the design of organic diode laser structures and in the selection of charge transporting materials  相似文献   

18.
We studied the effect of the charge transport layers in p-i-n perovskite solar cells using vacuum deposited methylammonium lead iodide thin-film absorbers. While solution-processed perovskite films are frequently deposited directly on PEDOT:PSS leading to good solar cell performances, in some cases even to very good Voc values, we show that in devices employing vacuum deposited MAPbI3 perovskites, the removal of the polyTPD electron blocker substantially reduces the photovoltaic behavior. This is indicative of rather different charge transport properties in the vacuum deposited MAPbI3 perovskites compared to those prepared from solution. On the other hand, we investigated the use of ionic interlayers as a possible alternative to low work function electrodes, whose reactivity towards air and moisture compromises the device stability. Two different electron extraction materials were evaluated as interlayers between the fullerene electron transport layer and a silver electrode, in particular a perylenediimide derivative and a conjugated polyelectrolyte. By studying the photovoltaic response and the electroluminescence properties of planar diodes using the ionic films and comparing them with devices employing barium, we found that such ionic interlayers can successfully replace the use of reactive electrodes, since they facilitate the electron extraction while reducing the non-radiative recombination at the electron transport interface.  相似文献   

19.
Characterizing the density of states (DOS) width accurately is critical in understanding the charge‐transport properties of organic semiconducting materials as broader DOS distributions lead to an inferior transport. From a morphological standpoint, the relative densities of ordered and disordered regions are known to affect charge‐transport properties in films; however, a comparison between molecular structures showing quantifiable ordered and disordered regions at an atomic level and its impact on DOS widths and charge‐transport properties has yet to be made. In this work, for the first time, the DOS distribution widths of two model conjugated polymer systems are characterized using three different techniques. A quantitative correlation between energetic disorder from band‐bending measurements and charge transport is established, providing direct experimental evidence that charge‐carrier mobility in disordered materials is compromised due to the relaxation of carriers into the tail states of the DOS. Distinction and quantification of ordered and disordered regions of thin films at an atomic level is achieved using solid‐state NMR spectroscopy. An ability to compare solid‐state film morphologies of organic semiconducting polymers to energetic disorder, and in turn charge transport, can provide useful guidelines for applications of organic conjugated polymers in pertinent devices.  相似文献   

20.
Controlling charge doping in organic semiconductors represents one of the key challenges in organic electronics that needs to be solved in order to optimize charge transport in organic devices. Charge transfer or charge separation at the molecule/substrate interface can be used to dope the semiconductor (substrate) surface or the active molecular layers close to the interface, and this process is referred to as surface‐transfer doping. By modifying the Au(111) substrate with self‐assembled monolayers (SAMs) of aromatic thiols with strong electron‐withdrawing trifluoromethyl (CF3) functional groups, significant electron transfer from the active organic layers (copper(II) phthalocyanine; CuPc) to the underlying CF3‐SAM near the interface is clearly observed by synchrotron photoemission spectroscopy. The electron transfer at the CuPc/CF3‐SAM interface leads to an electron accumulation layer in CF3‐SAM and a depletion layer in CuPc, thereby achieving p‐type doping of the CuPc layers close to the interface. In contrast, methyl (CH3)‐terminated SAMs do not display significant electron transfer behavior at the CuPc/CH3‐SAM interface, suggesting that these effects can be generalized to other organic‐SAM interfaces. Angular‐dependent near‐edge X‐ray absorption fine structure (NEXAFS) measurements reveal that CuPc molecules adopt a standing‐up configuration on both SAMs, suggesting that interface charge transfer has a negligible effect on the molecular orientation of CuPc on various SAMs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号