首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
烧结钕铁硼磁体具有优异的磁性能,被广泛地应用于高新技术领域的核心功能器件。然而,新能源汽车和风力发电等低碳经济的发展对烧结钕铁硼磁体的磁性能提出了更高的要求,高矫顽力高磁能积磁体成为今后发展的重要趋势。高矫顽力和高磁能积一直以来都是一个矛盾体,晶界扩散技术的发展改变了这一现象。利用晶界扩散技术对磁体晶界成分和结构的调控实现了高矫顽力和高磁能积的双高综合磁性能,而且降低了制造成本,节约了重稀土资源。本文总结归纳了国内外晶界扩散技术的最新研究成果,重点介绍了晶界扩散后磁体界面微观结构和化学成分的变化规律及其与磁性能的内在联系,论述了相应的微观机制,为晶界扩散技术的进一步发展及钕铁硼磁体磁性能提高提供了理论参考。  相似文献   

2.
高矫顽力烧结钕铁硼磁体具备较强的抗退磁能力和良好的温度稳定性,是保障永磁电机长期安全运转的关键基础。传统制造技术需要在材料中加入大量重稀土元素以提升材料的矫顽力,然而,重稀土元素极为稀缺因而价格高昂,并且重稀土元素直接添加不可避免的会造成材料剩磁的明显下降。本文研究了烧结钕铁硼晶界扩散处理后磁体的微观组织结构变化规律和矫顽力增强机制,通过晶界富稀土相组成及分布的优化,材料矫顽力得到大幅提升,适合制造兼具高剩磁、高矫顽力的高性能钕铁硼永磁材料。  相似文献   

3.
刘峰  李琳穗 《铜业工程》2023,(1):121-126
烧结钕铁硼(Nd-Fe-B)系永磁材料,作为现今社会的主流永磁材料,因价格相对较低、应用范围广泛、磁性性能突出而被广泛应用。为满足现代科学向轻量化和小型化发展的目标,促进稀土资源综合平衡利用,企业不仅需要最大幅度降低制造成本,还要保证烧结钕铁硼磁体的各项磁性能符合社会需求。本文针对烧结钕铁硼成品的组成、各向异性、矫顽力和磁能积等磁性性能,结合现阶段主要采用晶界扩散、晶界掺杂和晶粒细化三大方式改善钕铁硼磁性性能的主流方式,通过对相关磁体磁性性能提升研究近况的分析,探索工业中提升烧结钕铁硼磁性材料磁性性能的可能性与研究方向。  相似文献   

4.
热压/热变形钕铁硼磁体具有良好的纳米晶微结构、剩磁、磁能积以及高的抗腐蚀性和热稳定性等优点,受到人们的广泛关注。近年来Dy、Tb等重稀土的价格飙升,尤其是晶界扩散方法应用于热变形磁体使其矫顽力大幅度提高,热变形钕铁硼磁体的研究重新成为当前磁性材料研究的热点。本文从热压/热变形钕铁硼磁体的制备工艺、微观结构、元素掺杂等方面进行总结。介绍了几种提高热变形钕铁硼磁性能的工艺方法,对热变形钕铁硼的Nd元素含量、热变形温度、变形量、富Nd相的形状与分布、晶粒形状与修饰等进行探讨。并对多种低熔点共晶合金晶界扩散和压力扩散进行对比,采用添加轻稀土或者是添加高熔点合金的方式使得热变形钕铁硼仍然保持较优异的磁性能。此外,利用微磁模拟和透射电镜原位加场研究对热变形钕铁硼的磁化机理、晶粒耦合机制与矫顽力机制进行总结。这些机制包括主相晶粒间的交换耦合作用、晶间相的去磁耦合作用、钉扎理论、自钉扎理论、成核理论、成分关系理论、晶粒内部缺陷钉扎作用等相关理论。  相似文献   

5.
李建  周磊  刘涛  程星华  喻晓军  李波 《稀土》2013,(3):86-92
烧结钕铁硼性能要求不断提高的今天,晶界扩散技术应运而生。通过该技术能用少量重稀土大幅提高矫顽力,且避免剩磁下降。本文对目前研究开发中的多种晶界扩散Dy工艺介绍总结,并就晶界扩散工艺提高矫顽力的机制做了简要分析。  相似文献   

6.
铽纳米颗粒掺杂烧结高性能NdFeB永磁的研究   总被引:1,自引:1,他引:0  
分别采用物理气相沉积和快淬-氢爆工艺制备了Tb纳米粉和主相Nd_2Fe_(14)B磁性粉末, 研究了Tb纳米颗粒掺杂对烧结NdFeB永磁磁性能和微观结构的影响. 结果表明, 随着纳米Tb粉含量的增加, 磁体的矫顽力逐渐升高, 剩磁和磁能积则呈下降趋势. 显微组织研究表明, Tb元素富集在主相晶粒的边界层位置, 这种分布方式不仅有效地提高了磁体的矫顽力, 而且降低了Tb的添加量, 从而减小了Tb的添加对磁体剩磁及磁能积的负面影响.  相似文献   

7.
采用废旧的烧结钕铁硼电机磁钢作为研究对象(牌号33H),研究富铈液相合金添加量对再生烧结钕铁硼磁体的磁性能和微结构的影响。研究结果表明,在相同的烧结温度下,当未添加液相时,再生磁体密度很低;进一步提高烧结温度,磁体密度略有提高,但是磁体容易氧化、甚至开裂。随着液相合金的添加,再生磁体的密度不断提高,磁性能相应地明显改善,这说明液相合金具有明显的助烧结作用。但是当液相合金的添加量超过8%(质量分数)时,再生磁体的矫顽力降低,这可能因为过多的富铈液相添加使磁体中的富稀土相团聚,磁体微观结构变差。当液相合金添加量为5%,烧结温度为1080℃时,再生烧结钕铁硼磁体的磁性能最佳:剩磁Br达到11.67 k Gs,内秉矫顽力Hcj达到18.94 k Oe,磁能积(BH)max为33.1 MGOe。再生磁体的性能与原废旧磁钢相当,甚至略有提高,再生磁体具有优异的退磁曲线方形度(Hk/Hcj=0.972)。  相似文献   

8.
张晓鹏  于旭光 《特殊钢》2012,33(2):46-48
在于法制备烧结钕铁硼生产线上,研究了11.54 MPa和9.23 MPa两种成形压力对Φ9.5mm烧结钕铁硼磁体(/%:31.00Pr+Nd、1.20B、0.20Al、余Fe)微观组织与磁性能的影响。结果表明,成形压力增大可以改善晶粒分布的不均匀性,提高取向度,从而提高剩磁与磁能积;但成形压力增大易使晶粒尺寸增大,从而使矫顽力降低。  相似文献   

9.
研究了晶界扩散处理对高Dy含量烧结Nd-Fe-B磁体性能和结构的影响。经蒸镀渗Dy晶界扩散处理,高Dy含量Nd-Fe-B磁体的矫顽力从1 713 kA/m提高至2 161 kA/m,而剩磁和最大磁能积基本没有下降,处理后磁体内Dy平均质量分数仅增加0.30%。不同深度片层分析表明,虽然磁体近表面片层比中心片层的Dy含量高,但是片层间矫顽力相差较少,而且所有片层的矫顽力均远高于未处理磁体片层的矫顽力。电子探针Dy元素面分布结果显示,在未处理高Dy含量磁体的晶界与主相中均存在Dy元素富集区且富集浓度较低,而经扩散处理后,晶界富Nd相中的Dy富集区浓度及所占比例明显提高;包括磁体芯部在内,磁体内大部分角隅处富Nd相内Dy含量明显增加,进一步提高了高Dy含量磁体内部各处的矫顽力。  相似文献   

10.
对Ga、Al、Cu和Zr共同掺杂的烧结Nd-Fe-B磁体磁性能和显微结构进行研究,并通过回火工艺对磁体的矫顽力进行调控。结果表明:当一级回火为900℃×150 min,且二级回火为500℃×180 min时,磁体矫顽力Hcj从烧结态的14.33 kOe大幅提高到二级回火态的19.86 kOe,提高了38.6%;方形度Hk/Hcj由0.86增加到0.97;剩磁Br仅从烧结态13.51 kGs略微下降到二级回火态的13.46 kGs;富稀土相分布更加连续和明显。研究分析表明,矫顽力大幅增加主要是由于含有少量的富Nd相和贫B相的烧结Nd-Fe-B磁体中Ga的掺杂改变了晶界相湿润性,降低了富稀土相中Fe元素的含量。本研究为无重稀土高矫顽力和高剩磁烧结Nd-Fe-B磁体步入产业化夯实了理论基础。  相似文献   

11.
为开发低成本烧结钕铁硼磁体,用30% Ce替代(Nd0.75Pr0.25)32.69Fe66.25B1.06磁体中的Nd和Pr,研究了磁体在烧结及回火过程中的组织结构和磁学性能变化.结果表明,取向压坯在1030~1080℃烧结2 h后,随烧结温度升高,磁学性能下降,烧结温度为1030℃时综合磁学性能均最好.烧结态Ce替代磁体的综合磁学性能优于未替代磁体.一级回火后,相组成和晶粒尺寸基本不变,边界结构也未发生明显变化,磁体性能基本不变,或有少量下降.二级回火后,晶界明显改善,获得较清晰且平直的晶界,磁体矫顽力均得到大幅提高.Ce替代磁体的剩磁、矫顽力和磁能积均稍低于未替代磁体.   相似文献   

12.
NdFeB磁体的烧结过程研究   总被引:1,自引:0,他引:1  
研究了在真空和氩气中烧结对NdFeB磁体磁性能和微观组织的影响.结果发现:经真空烧结的磁体磁性能有较大的个体差异,而在氩气中烧结的磁体磁性能则基本均匀一致,与前者相比,其剩磁平均值高0.05~0.09 T,内禀矫顽力要高1.6 MA/m左右,磁能积约高40 kJ/m3.SEM照片显示,在氩气气氛中烧结的磁体的微观组织更加均匀,而经真空烧结的磁体则有较多的缺陷.  相似文献   

13.
研究了不同稀土含量的烧结NdFeB磁体的磁性能、微观结构和抗弯强度。结果表明,提高稀土含量可提高烧结NdFeB磁体的抗弯强度,同时对烧结NdFeB磁体的矫顽力和退磁曲线方形度有一定的提高作用,但会降低烧结NdFeB磁体的剩磁。SEM微观形貌图像表明,提高稀土含量可有效改善铸片、烧结NdFeB磁体的微观结构,使富稀土相分布更加均匀连续,从而提高烧结NdFeB磁体的抗弯强度和矫顽力。  相似文献   

14.
对比研究了38UH、42SH和N50薄片状钕铁硼磁体晶界镝扩渗前后的组织结构与磁性能,发现经过镝扩渗处理后磁体的矫顽力提高了400 kA·m-1以上,而剩磁几乎不变,最大磁能积因为矫顽力和方形度的提高而提高。经组织结构分析认为,钕铁硼磁体晶界镝扩渗提高矫顽力主要是通过提高Nd2Fe14B晶粒外延层的各向异性和形核场实现的。根据Fick第一扩散定律,对磁体晶界镝扩渗进行了模拟计算,可近似得到定温热处理不同时间后渗镝深度及对应的镝的质量浓度及质量分数。   相似文献   

15.
晶界添加氧化物对烧结NdFeB磁性能的影响   总被引:1,自引:0,他引:1  
为了提高NdFeB磁体的磁性能,通过球磨混粉的方式,研究了通过在晶界上添加MgO,SiO2和CaO对烧结NdFeB磁性能的影响,并采用扫描电镜分析了添加物在晶界相中的分布。研究结果表明,晶界添加适量MgO可实现磁体剩磁、最大磁能积的提高,矫顽力几乎保持不变,在当前实验条件下,当添加量为0.1%时磁性能达到最大值。  相似文献   

16.
与烧结钐钴磁体相比,烧结钕铁硼稀土永磁具有优异的室温磁性能和力学性能,但其居里温度较低,只有310℃左右,限制了其在耐高温磁应用领域的使用推广。钴元素部分取代钕铁硼中的铁元素可以提高钕铁硼永磁体的居里温度,传统的钴添加方式会使磁体中形成铁钴软磁相,从而造成磁体的矫顽力大大降低。本文研究了不同钴添加量对钕铁硼磁体物相、居里温度和磁性能的影响规律,结合Al、Ga、Cu等元素对钕铁硼永磁体晶界相物相结构的协同调控作用,避免了钴元素取代铁元素过程中Fe-Co软磁相的产生。本研究制备的高钴含量钕铁硼磁体矫顽力高Hcj>28kOe,居里温度Tc>450℃,剩磁温度系数|α|20℃~100℃<0.078%/℃,矫顽力温度系数|β|20℃~100℃<0.55%/℃。  相似文献   

17.
为了改善NdFeB磁性材料的磁性能和防腐性能,采用双合金法在晶界处添加Ho纳米粉制备高性能永磁材料。对烧结永磁体(PrNd)_(29.9)Dy_(0.1)B_1Co_1Cu_(0.15)Fe_(bal)+xHo(添加Ho纳米粉的质量分数分别为0、0.2%、0.4%、0.6%和0.8%)的形貌、微观结构及成分、磁性能和腐蚀性进行了分析。结果表明,随着Ho元素含量的增加,磁体矫顽力增幅变大;剩磁和最大磁能积降幅渐快,从0.6%到0.8%下降幅度最大。当Ho添加量为0.6%时,综合性能达到最佳。磁体矫顽力达到1108 kA·m~(-1),提升了5.8%,剩磁和最大磁能积略微下降,分别为0.3%和0.2%;并且在3.5%NaCl溶液中,添加0.6%Ho纳米粉的钕铁硼磁体,腐蚀电流最小,达到0.327μA·cm~(-2),提升了近一个数量级;I_((006))/I_((105))比值算出,添加量为0.6%Ho时取向度为1.45,磁体密度增加1.6%,达到7.61 g·cm~(-3)。  相似文献   

18.
采用传统的粉末冶金方法制备了名义成分为Nd_(28)Dy_2Fe_(68.6)B_1Ga_(0.2)Nb_(0.2)的烧结钕铁硼磁体,并研究了烧结钕铁硼磁体Nd_(28)Dy_2Fe_(68.6)B_1Ga_(0.2)Nb_(0.2)晶粒的细化和磁体晶界相演化之间的关系。通过细化磁粉粒度,制备出了平均晶粒尺寸分别是8.22,4.69,3.60和3.12μm的4种磁体。结果表明,磁体平均晶粒尺寸为3.60μm时对应的磁体的磁性能最好:最大磁能积(BH)m=389.93 k J·m~(-3),内禀矫顽力Hcj=1282.79 k A·m~(-1)。从磁体的微观形貌观察发现,随着磁体平均晶粒尺寸的减小,磁体中角隅晶界相的尺寸减小,条带状晶界相的比例增大,使更多的富Nd相参与到隔断主相晶粒之间的磁交换耦合中来,磁体矫顽力提高。磁粉粒径细化之后,磁粉颗粒的形貌更加规则、均一,取向时受到的摩擦力减小,提高了磁体的剩磁和取向度。但是随着平均晶粒尺寸从3.60到3.12μm的进一步减小,富Nd相发生了团聚,且分布不均匀,导致磁体矫顽力降低;磁体中的富Nd相增多并团聚,导致了磁体在烧结过程中由于液相较多而使主相晶粒发生了偏转,而且导致了磁体取向度降低,进而导致剩磁的减小。  相似文献   

19.
通过晶界扩散技术提升烧结钕铁硼(NdFeB)磁体矫顽力的方法已获得广泛应用,为了研究重稀土磁粉对磁体综合磁性能的影响,本文采用喷涂扩散的方法将重稀土Tb含量为6.0%(质量分数)的磁粉作为复合扩散源的一部分进行晶界扩散并制备了高性能烧结NdFeB磁体。结果表明,当主扩散源占比为60%(质量分数)时,Nd40Tb60对应扩散磁体的矫顽力最高达到21.52 kOe,矫顽力增幅明显。经过微观组织结构和XRD表征分析,重稀土元素Tb沿晶界相扩散进入磁体内部的同时发生了晶格取代反应,可在晶粒表层生成磁晶各向异性场更强的(Nd,Dy/Tb)2Fe14B硬磁相,显著增强了磁体矫顽力。当主扩散源占比为20%、40%和80%(质量分数)时,Nd80Tb20,Nd60Tb40和Nd20Tb80对应扩散磁体的矫顽力增幅较小,其中Nd80Tb20扩散...  相似文献   

20.
用磁控溅射法在烧结Nd-Fe-B磁体表面沉积Tb金属薄膜并进行晶界扩散处理,对比经不同热扩散温度及时间处理后的磁体组织和磁性能变化.结果 表明,925℃×10 h+500℃×2 h为最佳晶界扩散工艺,可将磁体矫顽力提高到1630.9 kA· m-1,较原始磁体提升50%,同时剩磁和磁能积无明显下降,磁体仍具有较高的退磁...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号