首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
采用超声波辅助提取黔产密蒙花黄色素,得到最优的提取条件为:料液比1∶30(g/mL)、超声波时间25 min、超声波功率200 W。此外,密蒙花黄色素稳定性研究表明:密蒙花黄色素在中性及弱酸性的环境中较为稳定,在碱性环境中不能稳定存在;在光照以及50℃以上,密蒙花黄色素易分解;密蒙花黄色素具有一定的抗氧化剂的能力,其抗还原剂的能力较弱。  相似文献   

2.
为探究熏鸡糖熏上色机理,对糖熏熏鸡皮色素进行提取。对糖熏熏鸡皮色素的提取工艺参数进行优化。以糖熏熏鸡皮为原料,采用超声辅助提取糖熏熏鸡皮色素,以色素溶液的吸光度为指标,通过单因素试验考察乙醇体积分数、超声波处理提取时间、液料比对糖熏熏鸡皮色素提取液吸光度的影响,并结合响应面试验对提取工艺进行优化。结果表明:超声辅助提取糖熏熏鸡皮色素的最佳工艺条件为乙醇体积分数85%、超声波处理提取时间32 min、液料比10∶1(V/m);在最佳工艺参数条件下,实验提取的糖熏熏鸡皮色素的吸光度为3.397,与理论值相差0.38%,表明该色素的提取工艺条件合理可行。  相似文献   

3.
采用响应面法优化超声波辅助提取枣皮中红色素的条件。在单因素实验基础上,选择超声时间、超声波功率、NaOH浓度和液料比为提取因子,色素提取液吸光度值为响应值,进行四因素三水平Box-Behnken中心组合设计,采用响应面法分析优化提取工艺。超声波辅助提取枣皮中红色素的最优条件为:超声时间30min,超声功率80W,NaOH浓度0.5mol/L,料液比1∶10g/mL(w/v)。在此条件下,模型预测吸光度值为1.445,验证实验吸光度值为1.427,说明模型具有良好的拟合度,能较好的描述实验结果。  相似文献   

4.
超声波辅助提取刺五加浆果色素工艺优化   总被引:1,自引:0,他引:1  
孙海涛  邵信儒 《食品科学》2011,32(22):109-113
根据中心组合(Box-Behnken)试验设计原理采用四因素三水平响应面分析法,对超声波辅助法提取刺五加浆果色素工艺进行优化。结果表明:超声波辅助提取色素的最佳工艺条件为液料比9:1、乙醇体积分数37.5%、超声功率170W、超声时间43min,在此条件下测得色素吸光度为0.791。  相似文献   

5.
荸荠皮色素提取新方法及其稳定性、抗氧化性研究   总被引:1,自引:0,他引:1  
采用超声波辅助内部沸腾法提取荸荠皮色素,利用单因素试验和响应面试验优化液料比、功率、温度和时间等提取条件,并考察荸荠皮色素不同pH值下的稳定性及不同浓度时的抗氧化性。结果表明最佳提取条件为:液料比50∶1(mL/g),功率280 W,温度60℃,时间20 min,该条件下荸荠皮色素吸光度的理论预测值为0.921。稳定性试验表明,在酸性条件下色素吸光度有一定程度的减小;碱性条件下具有一定的增色作用。该荸荠皮色素具有较强的抗氧化活性,提取液对羟基自由基的清除率可达97.38%。  相似文献   

6.
研究超声波耦合乙醇-磷酸氢二钾双水相萃取技术用于提取密蒙花黄色素,通过正交实验考察了乙醇浓度、超声时间、超声波功率对提取率的影响。结果表明,影响密蒙黄提取率的因素显著性顺序为乙醇浓度>超声波功率>超声时间,最佳提取条件为:乙醇浓度50%、超声提取时间20min、超声波功率500W;在此工艺条件下,密蒙黄的萃取率达到27.11%。  相似文献   

7.
以正红菇为原料,采用超声波辅助提取正红菇色素,以正红菇色素溶液的吸光度为指标,通过单因素实验,考察了乙醇浓度、提取时间、提取温度和料液比对正红菇色素提取液吸光度的影响,并结合响应面实验对提取工艺进行优化。结果显示,超声波辅助提取正红菇色素的最佳工艺条件为:乙醇浓度55%,提取时间29 min,提取温度68 ℃,料液比1:35 g/mL。在最佳工艺参数条件下,实验提取的正红菇色素的吸光度值为0.404,与理论预测值0.406相近,表明该色素提取的工艺条件是合理可行的。  相似文献   

8.
采用超声波法提取山竹果壳色素,并通过L(934)正交试验优化提取工艺条件。结果表明:色素在可见光区的最大吸收波长为478 nm,最佳提取工艺条件为:以70%乙醇为浸提剂,超声波功率350 W,提取时间40 min,料液比1∶30(g/mL),提取温度70℃,此条件下的色素提取液吸光度值A478为2.26。超声波辅助提取山竹果壳色素的效率明显高于常规提取法。  相似文献   

9.
采用微波辅助提取黔产密蒙花黄色素,得到最优的提取条件为:微波功率250 W、料液比1:50、提取时间30 min。此外,密蒙花黄色素稳定性研究表明:密蒙花黄色素在中性及弱酸性的环境中较为稳定,在碱性环境中不能稳定存在;在光照以及50℃以上,密蒙花黄色素易分解;密蒙花黄色素具有一定的抗氧化能力,其抗还原能力较弱。  相似文献   

10.
以废弃的荔枝壳为原料,利用超声波研究超声时间、盐酸体积分数、料液比三因素对荔枝壳色素提取的影响,然后采用响应面试验进行优化提取荔枝壳色素的工艺参数。结果表明,超声时间、盐酸体积分数、料液比对荔枝壳色素提取液吸光度的影响显著,因素影响大小顺序为:料液比盐酸体积分数超声时间;荔枝壳色素的最佳提取工艺参数为:超声时间18 min、盐酸体积分数0.4%、料液比1∶93(g/mL),此条件下提取荔枝壳色素的吸光度为1.587。  相似文献   

11.
响应面分析法优化微波提取密蒙花总黄酮工艺   总被引:1,自引:0,他引:1  
以水为介质,密蒙花总黄酮提取率为考察指标,优化微波强化提取密蒙花总黄酮的工艺.选取微波功率、微波工作时间和液料比为影响因子,在单因素试验的基础上,进行3因素3水平的Box-Behnken中心组合试验设计.以密蒙花总黄酮提取率为响应值,进行响应面(RSM)分析,优化微波强化提取密蒙花总黄酮的提取条件.试验结果表明,微波处...  相似文献   

12.
采用三相分配法(TPP)提取琉璃苣籽油,以琉璃苣籽油得率为指标,对提取时间、料液比、硫酸铵加量、水相与叔丁醇体积比进行了研究;同时比较了超声波预处理辅助三相分配法(UPTPP)和超声波辅助三相分配法(UTPP)对琉璃苣籽油提取效果的影响。结果表明:采用TPP,在料液比1∶15、提取时间20 min、硫酸铵加量0.35 g/mL、水相与叔丁醇体积比1∶2时,琉璃苣籽油得率最大,为31.26%;采用超声波作为过程强化方法,可缩短TPP的提取时间,且UPTPP优于UTPP,在超声波预处理时间160 s、超声功率100 W、占空比50%时,琉璃苣籽油得率为33.57%,比TPP提高了2.31个百分点。因此,超声波预处理后采用三相分配法是一种有效的油脂提取方法。  相似文献   

13.
Buddleja yellow colorant derived from Buddleja officinalis Maxim. has recently been approved for use as a new kind of natural colorant for food additives in China. In order to distinguish Buddleja yellow colorant from other yellow colorants, two known phenylpropanoid glycosides, acteoside (= verbascoside) and poliumoside, were isolated from the colorant as marker substances for Buddleja yellow colorant. Poliumoside has not been detected in B. officinalis Maxim. previously. These phenylpropanoid glycosides were not detected in the fruits of Gardenia jasminoides Ellis or in the stamens of the flowers of Crocus sativus L., which also contain crocetin derivatives as coloring components, using a photodiode array and mass chromatograms. Thus, an analytical HPLC method was developed to distinguish foods that have been colored with yellow colorants containing crocetin derivatives, using phenylpropanoid glycosides as markers.  相似文献   

14.
采用Box-Behnken设计和响应面分析法,对芦笋总皂苷的超声辅助提取工艺进行优化。以提取温度、提取时间及超声功率为自变量,芦笋总皂苷得率为响应值,研究各自变量及其交互作用对超声波辅助提取法提取芦笋总皂苷得率的影响。结果表明:最佳工艺条件为乙醇体积分数95%、提取温度71℃、提取时间23min、超声功率70W、提取次数2次,在此条件下获得总皂苷的提取率为23.96mg/g。  相似文献   

15.
响应面法优化小米黄色素提取工艺   总被引:1,自引:1,他引:1  
研究了小米黄色素的提取工艺.在单因素试验的基础上,采用响应面法(response surface meth-odology,RSM)研究了料液比、乙醇体积分数和提取时间对提取液中小米黄色素含量的影响,建立了二次回归方程,得到提取工艺的最优条件.结果表明,料液比和提取时间对小米黄色素提取含量有较显著影响,当提取工艺条件为:料液比为3.4:1,提取时间为2.7 h,乙醇体积分数为96%时提取液中小米黄色素含量达到理论极大值0.336 mg/100 g.  相似文献   

16.
目的探究超声耦合双水相法提取香菇柄中多酚类物质的最佳工艺。方法采用超声耦合双水相法对香菇柄中多酚进行提取,探讨硫酸铵质量分数、液料比、超声时间、超声功率对多酚含量的影响,在单因素试验的基础上,设计响应面优化试验,确定最佳提取工艺。结果各因素对多酚含量的影响由大到小依次为:超声功率硫酸铵质量分数液料比超声时间。超声耦合双水相法提取香菇柄中多酚的最佳工艺为:超声功率125 W,硫酸铵质量分数40 g/100 m L,液料比30:1(m L/g),超声时间40 min。在此条件下,提取的多酚含量预测值为31.746 mg/g,试验值为(31.746±0.008)mg/g,试验值与预测值基本相符。结论超声耦合双水相法提取条件温和、操作简单,与传统乙醇浸提法相比,不仅节约提取时间,还能提高多酚含量达60%,适于香菇柄中多酚类物质的提取研究。  相似文献   

17.
目的:确定金盏菊花色素的最佳提取工艺,并对其稳定性进行研究。方法:以浸提法对金盏菊花中的色素进行提取,通过对提取剂、料液比、提取温度、提取时间4因素进行,L9(34)正交试验得到最佳提取条件;同时考察光照、热和食品添加剂等对色素稳定性的影响。结果:金盏菊花色素最佳提取工艺为提取剂90%乙醇、料液比1:8(g/mL)、在70℃水浴中浸提40min;该色素在酸性条件下稳定性较好,对光和热稳定性好;pH值对色素的稳定性影响较大,在酸性条件(pH5)下该色素较稳定;常用食品添加剂如葡萄糖、蔗糖对色素的色泽无不良影响,金属离子Na+、Mg2+、Ca2+、Cu2+对金盏菊花色素无不良影响,而Fe3+则对色素有明显影响。结论:获得金盏菊花中色素提取的最佳工艺;色素对光、热、常用食品添加剂的稳定性良好,为其在食品和药品中的应用提供了广阔的前景。  相似文献   

18.
超声辅助提取野菊花黄色素及其稳定性研究   总被引:2,自引:0,他引:2  
用体积分数95%的乙醇对野菊花的黄色素进行超声提取,在不同超声频率、提取温度、料水比、提取时间等条件下对野菊花黄色素的提取工艺进行研究,并对色素在不同温度、光照、pH值、氧化剂、还原剂、食品添加剂以及一些金属离子条件下的稳定性进行研究。结果表明,该色素适宜提取工艺为:超声频率45 kHz,提取温度为60℃,料水比为1∶50(g∶mL),提取时间为50 min。野菊花黄色素的耐光性差,耐热性较好,在酸性、还原剂、苯甲酸钠中的稳性较差,在碱性、氧化剂、Vc、柠檬酸、葡萄糖溶液中稳定性较高,色素对多数金属离子溶液的稳定性较高,K+、Fe3+、Al3+对色素有一定的减色作用。  相似文献   

19.
本文研究百香果果皮多糖的提取工艺条件及果皮多糖体外抗氧化活性。采用超声波提取方法,以百香果果皮多糖得率为响应值,在单因素实验基础上,优化液料比、超声功率、超声时间、超声温度等条件,得到最佳提取工艺:液料比为49:1(mL/g),超声温度69℃,超声时间15 min,超声功率105 W,多糖平均得率为5.890%,与预测值(6.09%)接近。体外抗氧化活性分析结果表明:当多糖浓度为2 mg/mL时,多糖对DPPH和羟自由基的清除能力分别为32.8%和59.0%,还原能力吸光值为0.34,较维生素C弱。研究成果将为百香果皮多糖的进一步研究及新产品开发提供理论指导。  相似文献   

20.
孔方  李莉  刘言娟 《食品工业科技》2020,41(14):134-139,147
目的:本研究采用绿色新型低共熔溶剂作为提取剂,对废弃苹果叶中总黄酮进行超声辅助提取。方法:通过单因素实验研究了低共熔溶剂的组成体系、组成比例、含水量、液料比(mL:g)、超声温度(℃)、超声时间(min)对总黄酮提取率的影响,在此基础上采用响应面法建立数学模型,进行数据分析,对苹果叶总黄酮提取工艺进行优化及验证。结果:氯化胆碱/三氟乙酸(摩尔比1:2)形成的低共熔溶剂在含水量30%,液料比23:1 mL/g,超声温度72 ℃,超声时间27 min时对苹果叶总黄酮的提取效果最佳,平均提取率为7.06%。结论:超声辅助低共熔溶剂提取废弃苹果叶中的总黄酮具有较好的提取效果,本研究能够为苹果叶资源的充分利用提供一定的技术支撑和理论依据。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号