首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
A simplified model predicting the heat transfer performance of a heat sink base with a high thermal conductivity was developed. Numerical analysis was performed using the commercial software FLUENT. The investigation indicates that for heat sink bases with a high effective thermal conductivity, such as the base embedded with a typical heat pipe, the entire heat sink can be modeled as a flat plate with a uniform temperature and an effective convection heat transfer coefficient. This simplified model can be used to determine the heat transfer performance of a heat sink embedded with a typical heat pipe or vapor chamber.  相似文献   

2.
针对芯片功耗与集成度提高而导致的局部热点问题,设计了一种用于芯片散热的复合热沉环路热管系统。建立了环路热管蒸发段模型,通过数值模拟的方法,证明了复合热沉环路热管系统能够降低热点温度,提高散热表面的温度均匀程度,且散热效果与热点的分布位置有关。当热点的热流密度为160W/cm2,热沉横向、纵向导热率分别为1500W/(m?K)、24W/(m?K)时,热点温度为88.88°C,相比于无热沉时降低了5.96°C。研究了不同热沉导热率下的热沉厚度对热点温度的影响,结果表明:若导热率各项同性,热点温度随热沉厚度的增加而降低,之后趋向不变;若为各项异性,存在最优的热沉厚度,使热点温度最低。  相似文献   

3.
The work investigated the forced convection heat transfer of the heat sink situated in a rectangular channel by considering the bypass effect. The fluid medium was air. The relevant parameters were the Reynolds number (Re), the relative top by‐pass gap (C/H), and the relative side by‐pass gap (S/L). The size of the heat sink was 60 mm (L)×60 mm(W)×24 mm(H). Two heat sinks were employed as test specimens: (A) the 0.9‐porosity aluminum foam heat sink and (B) the 0.9‐porosity aluminum foam heat sink with a 20 mm diameter copper cylinder. The copper cylinder was used as a conductive pipe of heat sink. The average Nusselt number was examined under various forced convection conditions. Experimental results demonstrate that increasing by‐pass space decreased the Nusselt number. Besides, the average Nusselt number of mode B heat sink was higher than that of mode A heat sink by 30% for the case without by‐pass flow. The heat transfer enhancement by the copper cylinder would decline as the by‐pass space grew. © 2009 Wiley Periodicals, Inc. Heat Trans Asian Res; Published online in Wiley InterScience ( www.interscience.wiley.com ). DOI 10.1002/htj.20247  相似文献   

4.
The performance of a normal micro gravitational heat pipe was investigated using the analytical and numerical models previously developed. An innovative structure of the heat pipe, i.e. the micro gravitational heat pipe with artery, was then proposed in an attempt to overcome some of the drawbacks of the normal pipe. The thermal behaviour of the new type of heat pipe was simulated, and this was compared with that of a normal micro heat pipe. A performance estimation of both pipes was carried out based on the simulation results. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

5.
One of the most critical innovations in the solar energy conversion is the use of concentrators for generating power from a smaller area of the cell. The thermal management has an exceptional role in the concentrated photovoltaic (CPV) cell, without which the operating temperature will increase owing to the thermal degradation. In the present study, a prototype of low CPV with single‐cell configuration using a Fresnel lens and a manual tracker with geometrical concentration ratio of up to 25 Suns is made. The performance of the CPV with passive cooling arrangements, such as heat sink and loop heat pipes (LHPs), is analyzed under real‐time outdoor conditions. The results obtained infer that the LHP‐based cooling system has brought down the average temperature rise above ambient to 37.8°C from 54.16°C and 72.6°C in the heat sink and bare CPV systems, respectively. Also, the LHP managed to reject the heat to the surrounding with an average thermal resistance of 1.005°C/W, which is the least when compared with the heat sink. Apart from the instabilities caused by the interference of clouds, the CPV with the LHP cooling system could generate 10% more power output than the one with a heat sink.  相似文献   

6.
The design and specification of heat sinks for electronic systems is not easily accomplished through the use of standard thermal design and analysis tools since geometric and boundary conditions are not typically known in advance. A second-law based thermoeconomic optimization procedure is presented for a finned heat sink array. This involves including costs associated with material, and irreversible losses due to heat transfer and pressure drop. The influence of important physical, geometrical and unit cost parameters on the overall finned array are optimized for some typical operating conditions that are representative of electronic cooling applications. The optimized cost results are presented in terms of ReD, ReL, λP / λH, and q for a finned system in a graphical form. In addition the methodology of obtaining optimum parameters for a finned heat sink system which will result in minimum operating cost is demonstrated. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

7.
The cooling performance of a plate‐fin‐type heat sink equipped with a cooling fan was investigated experimentally. The heat sink was 80 mm long, 43 mm wide, and 24 mm in height (including the 4‐mm‐thick base). The cooling fan was 40 × 40 × 15 mm and was set to direct the air flow vertically in the downstream half of the heat sink. We focused on the influence of the height (which varied from 5 to 20 mm) that the fan was set at, on the heat transfer coefficient of the heat sink. The maximum value of the heat transfer coefficient was achieved at a setting height of 5 mm. At this height, the volumetric heat transfer coefficient was 1.8 times as high as that in a parallel flow under the same fan power. This result indicates that the cooling performance of heat sinks with a cooling fan can be improved by using this kind of compact structure. © 2001 Scripta Technica, Heat Trans Asian Res, 30(6): 512–520, 2001  相似文献   

8.
Investigation of a piezoelectric fan embedded in a heat sink   总被引:1,自引:0,他引:1  
Previous studies show that the performance of a piezoelectric (PZT) fan is strongly affected by length, vibrating frequency, and fan amplitude. This study examines a cooling system, which is composed of a heat sink made of aluminum and a piezoelectric fan. An oscillating airflow can be generated and induced by the fan deformation. The piezoelectric fan between two fins may break the thermal boundary layer and enhance the heat dissipation rate of the cooling system with forced convection. In order to estimate the optimum design of the cooling system, the effects of operating frequency, fan amplitude, fan arrangement, Ri (Gr/Repzt2), and power consumption are analyzed. Moreover, the relationship between the dimensionless PZT-convection number (Mp) and Ri has been investigated to analyze the performance of the cooling system. A three-dimensional, transitional model has been built to account for the flow field of the cooling system. The optimum cooling system shows the Mp reaches 2.3.  相似文献   

9.
In the present work, an experimental investigation is conducted to address the influence of inner pipe twisting on the overall performance of a double pipe heat exchanger. With the fluid to fluid heat exchange, both parallel and counter flow directions are examined as well. In addition to the original elliptical pipe, three pipes with different numbers of twisting (3, 5, and 7 twists per unit length) constructed from the elliptical pipe are considered where the heat transfer rate and pressure drop are addressed. All tests are carried out in the turbulent flow regime where the Reynolds number (Re) ranging from 5000 to 26,000 and water is used as the working medium. The obtained outcomes show that for both flow directions, there is an enhancement in the heat exchanger overall performance with all considered twisting pipes. The maximum enhancement in the Nusselt number is found to be 1.8 for the parallel flow and around 2.2 for the counter flow compared with the original pipe. The inner pipe with 7 twists, however, improves the overall performance the most, where a maximum performance enhancement factor of 1.63 and 1.9 are observed at Reynolds number of 26,000 in the parallel and counter flow configurations, respectively.  相似文献   

10.
BoilingDelayPhenomenoninaThermosyphonHeatSinkandItsEffectonDevicePerformanceWeilinHu;YihuiZhou;AijunWang(DepartmentofEngineer...  相似文献   

11.
The paper is focused on the investigation of numerical simulation of stacked two-layer microchannel heat sink with enhanced mixing passive microstructure. In contrast to the smooth microchannel studies in the literature, the microchannel with embedded passive microstructure is chosen. The computational fluid dynamics (CFD) will be used to simulate the flow and heat transfer in a stacked two-layer microchannels with multiple MEMS easy-processing passive microstructures. To simulate the conjugated heat transfer among the heatsink and fluid, the three-dimensional conjugated model is used to solve this problem. The important parameters (e.g. the ratio of embedded structure height to microchannel height and fluid property) are investigated. The ratio of embedded structure height to microchannel height is changed from 0.13 to 0.26. The microchannel Reynolds number is fixed at 14.8. The stacked microchannel with passive structures has better performance than the smooth microchannels.  相似文献   

12.
As heat generation in satellites increases, securing sufficient radiator panel area is an important problem. Deployable radiators, whose radiator panels are deployed post‐launch in space to increase the effective radiator panel area of the satellite, is becoming an important thermal control technology. A reservoir embedded loop heat pipe (RELHP) is applied to the deployable radiator for a thermal transport device. This paper presents the heat transport dynamic characteristics of a RELHP using a radiant cooling condenser and liquid forced convection cooling condenser by an experimental study. It was found that heat leak into the liquid line, flexible line, and reservoir increases the length of the sub‐cooling region in the condenser. In the case of the radiant cooling condenser, the sub‐cooling region length is shorter than that of a liquid forced convection cooling condenser. Furthermore, vapor temperature is mainly decided by the radiation capacity of the radiator panel, because liquid temperature returned into the evaporator rises with an increase in radiator panel temperature. In addition, time length from start‐up until steady state is greater than the liquid forced convection cooling condenser case, because the radiator panel has a large heat capacity. © 2008 Wiley Periodicals, Inc. Heat Trans Asian Res; Published online in Wiley InterScience ( www.interscience.wiley.com ). DOI 10.1002/htj.20229  相似文献   

13.
In this paper, the possible optimal thickness of a heat sink base has been explored numerically with different convective heat transfer boundary conditions in a dimensionless three dimensional heat transfer model. From the numerical results, relations among different heat transfer mechanisms (natural or forced, air or liquid), different area ratios of a heat sink to a heating source, and the lowest thermal resistance have been obtained and discussed. Also a simple correlation for these three parameters from data fitting is given for guiding a heat sink design.  相似文献   

14.
Heat pipe utilizes continuous phase change process within a small temperature drop to achieve high thermal conductivity. For decades, heat pipes coupled with novel emerging technologies and methods (using nanofluids and self-rewetting fluids) have been highly appreciated, along with which a number of advances have taken place. In addition to some typical applications of thermal control and heat recovery, the heat pipe technology combined with the sorption technology could efficiently improve the heat and mass transfer performance of sorption systems for heating, cooling and cogeneration. However, almost all existing studies on this combination or integration have not concentrated on the principle of the sorption technology with acting as the heat pipe technology for continuous heat transfer. This paper presents an overview of the emerging working fluids, the major applications of heat pipe, and the advances in heat pipe type sorption system. Besides, the ongoing and perspectives of the solid sorption heat pipe are presented, expecting to serve as useful guides for further investigations and new research potentials.  相似文献   

15.
High‐powered satellites need larger heat rejection areas. A deployable radiator is one of the key technologies for a high‐powered satellite bus. A Reservoir Embedded Loop Heat Pipe (RELHP) is a two‐phase heat transfer device that constitutes the deployable radiator. RELHP has an evaporator core which is used as a liquid reservoir to enhance operational reliability. For use on satellites, RELHP is required to have a lifetime greater than 10 years. In the case of conventional heat pipes, it is generally known that noncondensable gas (NCG) has worse heat transport characteristics. On the other hand, the influence of NCG on a RELHP is not still obvious. This paper presents the heat transport characteristics of RELHP for the case of changing NCG volume by experiment and calculation. It was found that NCG increases temperature rise at the evaporator. NCG volume in a RELHP has a great influence on heat transport characteristics due to the reservoir pressure increase caused by NCG. © 2007 Wiley Periodicals, Inc. Heat Trans Asian Res, 36(8): 459–473, 2007; Published online in Wiley InterScience ( www.interscience.wiley.com ). DOI 10.1002/htj.20181  相似文献   

16.
本文简要阐述了热管的应用及研究现状,冰蓄冷目前的发展及研究情况;在此基础上,对热管冰蓄冷的优缺点及技术问题作了浅析.  相似文献   

17.
Amputees who use prosthetic limbs suffer from the problem of high contact temperature between the socket of the prosthetic limb and the amputated part and lack of evaporation of sweat. These conditions lead to discomfort and failure to perform functions properly. In addition, these conditions help generate ulcers and accumulate harmful bacteria in this area. This paper presents a heatsink design to extract heat from the contact area. A cylindrical heat sink is designed for phase-changing materials with three branched tubes in two stages. The current heat sink is used to cool the contact area between the amputated part and the socket in the lower prostheses. Three distributions of pipe branches are proposed. The distribution and pipe lengths were obtained using a constructal design method. In the constructal design, the lengths of the branched tubes were the degrees of freedom, the objective function was the minimization of the inlet temperature to the heat sink, and the constraint was the volume of the cylindrical heat sink. The metabolic heat transfer during exercise was estimated and its value was used to calculate the size of the cylindrical heatsink and the selection of the phase change material by testing three of them: water, tridecane, and dodecane. It was found that water gives the highest latent heat of melting and the lowest volume in addition to its availability. On the other hand, two cooling fluids were tested: water and air. It was found that water as a cooling fluid gave the lowest flow and the largest heat capacity. Constructal theory was used to design a cylindrical heat sink using branched tubes for the coolant in two steps: the first with three branches, and the second with nine branches. The degree of freedom for constructal theory was the length of the branches through the choice of their end locations. It was found that the branches of the highest length led to a reduction in temperature from 40°C to 15.48°C compared with the single tube, which reduced the temperature to 23.87°C. All tests recorded a pressure drop within the acceptable range of 3.1–5.43 Pa for the branches examined. The research demonstrated that using constructal theory achieved the best thermal dissipation within a restricted volume.  相似文献   

18.
The experimental study was performed on five eccentric radial heat pipes with two outer-tube diameters.The test range can be given as follows,working fluid filling ratio Ω=44%~83%,heat flux q=10000W/m2~32000W/m2,and working temperature tv=50 ℃~120 ℃.The correlations between radial heat pipe heat transfer performance and filling ratio,heat flux,working temperature were studied in the experiment.Based on linear regression of experimental data,the relationship between heat pipe equivalent heat resistance R and working temperature tv,heat flux q and filling ratio Ω was obtained.  相似文献   

19.
A novel loop heat pipe system was designed for use in solar hot water heating and an analytical model was developed to investigate its thermal performance and determine six major limits to system operation, i.e. capillary limit, entrainment limit, viscous limit, boiling limit, sonic limit, and filled liquid mass limit. Relations among the limits and several associated parameters, i.e. the heat pipe operating temperature, wicks type, heat pipe diameter, and height difference between the absorbing pipes array and condenser (heat exchanger), were established through a comprehensive analyses. It was found that the levels of capillary, entrainment, viscous, sonic, and filled liquid mass limits increased with the increasing temperature; however, the boiling limit was in the adverse trend. It was also found that the mesh screen wicks were able to obtain a higher capillary limit than sintered powder wicks, whilst other limits remained same. Larger pipe diameters would lead to higher operating limits. The height difference between the condenser (heat exchanger) and absorbing pipes (absorber) was the most important factor impacting on heat transfer capacities of the system, and largely affected the capillary limit of the system. It was noted when the pipe (inner) diameter increased to 5.6 mm or above, the governing limit of the system switched from entrainment to capillary. Relationship between the system governing limit, i.e. capillary limit, and the above addressed parameters were analysed. Adequate system configuration and operating conditions were suggested, which were summarized as follows: 6 mm of pipe inner diameter with mesh screen wicks, 58°C of heat pipe operating temperature, and 1.3 m height difference between absorber and condenser (heat exchanger). Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

20.
文中论述了热管在冰蓄冷中应用的原理与特点,扩展了热管的应用范围,分析了热管式蓄冰系统的动态特性,建立了相应的物理模型,该模型可为热管式蓄冰系统的设计提供理论依据。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号