首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
A spatial linear instability analysis is conducted on an annular viscous liquid jet injected into compressible gases and a three-dimensional model of the jet is developed. The model takes into account differences between the velocities, densities of the gases inside and outside of the liquid jet. Theoretical analysis reveals that there exist 9 dimensionless parameters controlling the instability of the liquid jet. Numerical computations reveal some basic characteristics in the breakup and atomization process of the liquid jet as well as influences of these relevant parameters. Major observations and findings of this study are as follows. The Mach number plays a destabilizing role and the inner Mach number has a greater effect on the jet instability than the outer Mach number. The Reynolds number always tends to promote the instabilities of the liquid jet, but its influence is very limited. The Weber number and the gas-to-liquid density ratio also have unstable effects and can improve the atomization of liquid jets. Furthermore, the effects of the Weber number and gas-to-liquid density ratio on the maximum growth rates of axisymmetric and non-axisymmetric disturbances and corresponding dominant wave numbers are manifested in a linear way, while that of the Mach number is non-linear. The effect of Reynolds on the maximum growth rates is non-linear, but the dominant wavenumber is almost not affected by the Reynolds number.  相似文献   

2.
A numerical simulation has been performed to clarify the effects of turbulence in a liquid on the deformation of the liquid jet surface into an air flow. The turbulences in the liquid jet were simulated by the Rankin vortices, and the liquid jet surface was tracked numerically by the volume of fluid method. By numerical simulations, the onset of the protrusions on the liquid jet surface is caused by the vortices in the liquid, and the surrounding air flow plays an important role in the amplification of the protrusions. The amplification rate of the trough displacement is proportional to the air‐to‐liquid velocity ratio. At large imposed vortex intensities, the trough displacement increases with the vortex intensity. On the other hand, at small imposed vortex intensities, the amplification of the trough displacement is also affected by factors other than vortex intensity. © 2001 Scripta Technica, Heat Trans Asian Res, 30(6): 473–484, 2001  相似文献   

3.
Penetration depth,spray dispersion angle,droplet sizes in breakup processes and atomization processes are very important parameters in combustor of air-breathing engine.These processes will enhance air/fuel mixing inside the combustor.Experimental results from the pulsed air-assist liquid jet injected into a cross-flow are investigated.And experiments were conducted to a range of cross-flow velocities from 42~136 m/s.Air is injected with 0~300kPa,with air-assist pulsation frequency of 0~20Hz.Pulsation frequency was modulated by solenoid valve.Phase Doppler Particle Analyzer(PDPA) was utilized to quantitatively measuring droplet characteristics.High-speed CCD camera was used to obtain injected spray structure.Pulsed air-assist liquid jet will offer rapid mixing and good liquid jet penetration.Air-assist makes a very fine droplet which generated mist-like spray.Pulsed air-assist liquid jet will introduce additional supplementary turbulent mixing and control of penetration depth into a cross-flow field.The results show that pulsation frequency has an effect on penetration,transverse velocities and droplet sizes.The experimental data generated in these studies are used for a development of active control strategies to optimize the liquid jet penetration in subsonic cross-flow conditions and predict combustion low frequency instability.  相似文献   

4.
The cooling characteristics of an impinging spray jet which forms an ellipsoidal liquid film were experimentally investigated in order to estimate the cooling performance of a rotating roll in a hot mill system. The following four conclusions were reached in the study. (1) In the case of a single spray jet, the local heat transfer coefficient at the center position depends on the forced convective heat transfer by the impinging jet. However, the average heat transfer coefficient is proportional to the flow rate density of the cooling water, and it does not depend on the distance between the nozzle and heated surface. (2) In the case of a double spray jet, liquid film interference occurs. The local heat transfer coefficient at the center position is greater, and the cooling performance increases with the increasing flow rate density of the cooling water. (3) The cooling performance of a multispray jet is proportional to the flow rate density of the cooling water. It does not depend on the nozzle construction, distance, or specifications. Also, there is no relation to the liquid film interference. (4) When the optimum specifications of the spray nozzle are used, thermal analysis of a rotating roll shows that the temperature at a depth of 1.3 mm from the surface is below 130 °C. © 2000 Scripta Technica, Heat Trans Asian Res, 29(4): 280–299, 2000  相似文献   

5.
Hydrogen is a highly flammable gas and accidental release in confined space can pose serious combustion hazards. Numerical studies are required to assess the formation of flammable hydrogen cloud within confined spaces. In the present study, numerical investigations on the release of helium and hydrogen gases as high-velocity jets and their subsequent distribution inside an unventilated cylindrical enclosure (AIHMS facility) has been carried out as a first step towards numerical studies on hydrogen distribution in confined spaces for safety assessments. Experimental data for jet release of helium at volume Richardson number 0.1 and subsequent distribution has been used as benchmark data. Sensitivity studies on the influence of grid sizes, time-steps and turbulence models are performed. The performance of the validated numerical model is evaluated using statistical performance parameters. Similarity relations are used to determine input parameters for hydrogen jet for corresponding experimental data with helium jets. Finally, the mixing and flammability aspects of hydrogen distribution inside the enclosure are studied using four numerical indices that quantify mixing and deflagration potential of a distribution. It is concluded that the helium experiments can be used for validation of numerical models for hydrogen safety studies and any one of the similarity relationships, viz., equal buoyancy, equal volumetric flow, or equal concentration can be used for assessing the behaviour of hydrogen release and distribution within confined spaces.  相似文献   

6.
为了解双层流体系统上液层流体与下液层流体普朗特数(Pr)对热毛细对流的影响,通过线性稳定性分析,确定了上液层流体与下液层流体Pr比值从0.164~5.417时环形双层流体热毛细对流失稳的临界条件,预测了它们的4种流动失稳型式,即轮辐状的几乎占据了整个液层的"轮辐波"、轮辐状的热流体波与同波数共同旋向的靠热壁处流胞、径向...  相似文献   

7.
The structure of gas–liquid two‐phase flow is investigated in order to establish a reliable criterion for the development of disturbance waves and droplets considering the effects of liquid viscosity. The structure of the gas–liquid interface and the flow rate of droplets entrained in gas are measured simultaneously at five kinematic viscosities (1.0, 3.2, 9.9, 30, 70 mm2/s). The time‐series traces of liquid film thickness measured by five holdup probes reveal that the inception of disturbance waves occurs at a liquid Reynolds number of 200 or a non‐dimensional liquid film thickness of 6.5. It is also shown that droplets are generated before the inception of disturbance waves with increasing liquid kinematic viscosity at a liquid velocity of 0.02 to 0.03 m/s. As previously published criteria for the inception of droplets are found to be unsatisfactory, a new critical condition for droplet generation balancing the interfacial shear stress $τi$ with the wave height h and surface tension σ is proposed: $τih/σ=0.025$. This relation describes the action of shear force and surface tension on wave crests, and is notably independent of liquid viscosity. © 2007 Wiley Periodicals, Inc. Heat Trans Asian Res, 36(8): 529–541, 2007; Published online in Wiley InterScience ( www.interscience.wiley.com ). DOI 10.1002/htj.20176  相似文献   

8.
The stability characteristics of attached hydrogen (H2) and syngas (H2/CO) turbulent jet flames with coaxial air were studied experimentally. The flame stability was investigated by varying the fuel and air stream velocities. Effects of the coaxial nozzle diameter, fuel nozzle lip thickness and syngas fuel composition are addressed in detail. The detachment stability limit of the syngas single jet flame was found to decrease with increasing amount of carbon monoxide in the fuel. For jet flames with coaxial air, the critical coaxial air velocity leading to flame detachment first increases with increasing fuel jet velocity and subsequently decreases. This non-monotonic trend appears for all syngas composition herein investigated (50/50 → 100/0% H2/CO). OH chemiluminescence imaging was performed to qualitatively identify the mechanisms responsible for the flame detachment. For all fuel compositions, local extinction close to the burner rim is observed at lower fuel velocities (ascending stability limit), while local flame extinction downstream of the burner rim is observed at higher fuel velocities (descending stability limit). Extrema of the non-monotonic trends appear to be identical when the nozzle fuel velocity is normalized by the critical fuel velocity obtained for the single jet cases.  相似文献   

9.
An experimental study was performed to determine the effects of inclination of an impinging two dimensional slot jet on the heat transfer from a flat plate. Local Nusselt numbers and surface pressure distributions were determined depending on inclination angle, jet-to-plate spacing and Reynolds number. The results showed that the location of maximum heat transfer was mainly due to the angle of inclination. As the inclination angle increases, the location of the maximum heat transfer shifts towards the uphill side of the plate and the value of the maximum Nusselt number gradually increases at lower jet-to-plate spacings.  相似文献   

10.
The radiative fraction is one key parameter to characterize the jet flame combustion dynamics and to calculate the thermal radiant heat emitted from jet fire. A theoretical analysis is conducted to clarify the key parameters that dominate the radiative fraction of jet fires, with discussion of the limitation of previous radiative fraction correlations. A completely new dimensionless group, consisting of the mass fraction of fuel at stoichiometric conditions, the density ratio of fuel gas to ambient air and the flame Froude number, is proposed to correlate the radiative fraction of jet fires. The current up-to-date experimental data are used to build the radiative fraction correlation that covers orifice exit diameters from one to hundreds of millimeter, hydrogen, methane and propane fuels, vertical and horizontal jets, buoyance- and momentum-controlled releases, subsonic, sonic and supersonic jets. It is found that the source Froude number can fit the radiative fraction of a particular fuel jet fire. However, the new dimensionless group can correlate the radiative fractions of fuel-different jet fires. The predictive capability of the new correlation exceeds that of previously published work based on the source Froude number only or the global residence time with/without correction factors.  相似文献   

11.
INTRODUCTIONGas-liquid two-phase annular flow is encountered ina wide range of industrial applications, including nuclear reactors, evaporators and condensers. The studyof annular flow not only because of the need to understand the heat transfer characteristics of such aflow, but also because annular flow may be precursory to liquid dryout in the challnel, which is significant in nuclear reactor safety and in corrosion pre-vention. An important feature of horizontal annularflow is the effe…  相似文献   

12.
The mixing process of fuel-air in the supersonic crossflow is a pivotal technology for the scramjet engine. In this paper, numerical simulation of the transverse sonic hydrogen jet into a supersonic Mach 3 crossflow with the mixing augmentation strategy induced by the combination of the oblique shock wave and secondary recirculation jet has been carried out. Detailed flow field structures, hydrogen mass fraction distributions, vortex structures, heat flux and some parameters have been explored in order to investigate its mixing enhancement mechanism. Results of the three-dimensional Reynolds-average Navier-Stokes (RANS) equations coupled with the two-equation shear stress transport (SST) κ-ω turbulence model show that the combined strategy of the oblique shock wave and secondary recirculation jet device can effectively improve the mixing speed and mixing efficiency with little total pressure loss. Also, the secondary recirculation jet device can reduce the peak of the heat flux effectively. In this study, the case with the single bleed hole owns the best effect with improving the mixing efficiency by 82.75% locally and reducing the maximum heat flux by 15.24% respectively。  相似文献   

13.
下降液膜流动模型及稳定性分析   总被引:2,自引:0,他引:2       下载免费PDF全文
建立了自由下降液膜流动的完备的数学模型。采用边界层理论对模型进行分析简化,得到液膜流动的二阶边界层模型,并对二阶界层模型进行稳定性分析,计算获得下降液膜波的增长率和中性稳定曲线,将计算结果与其它模型的计算结果进行了比较,证实了二阶边界层模型具有更好的预测效果,其形式便于作进一步的非线性分析。  相似文献   

14.
The motion of micro-particles with different mass flow rate in the planer turbulent jet flow has been simulated,using LES method to obtain the flow vorticity evolution and Lagrangian method to track micro-particles.The results showed that when the flow rate is small,the particles more likely to present in the vortex periphery,the distribution pattern is similar to the flow pattern.When the flow rate is high,some particles will escape from the motion region to the original static region,so that in the jet region,particles are relatively evenly distributed.When the flow field is full developed,the particles average concentration in the y direction affected by the mass flow rate relative slightly,the normalized mean particles concentrations at different flow rate were similar to Gaussian shape.  相似文献   

15.
陈鑫  谭胜 《热科学与技术》2016,15(6):456-461
为研究当量比和射流压力对激波聚焦起爆性能的影响,以氢气和空气作为工质,在不同当量比和射流压力下对凹面腔中激波聚焦起爆爆震波的过程进行了数值模拟。结果表明,在产生稳定爆震的当量比范围内,激波聚焦的起爆性能随当量比的增大先提高,后降低,在当量比1.1时取得最佳值。射流压力的增大能提高激波聚焦的起爆性能,但提高程度呈下降趋势;它同时有助于扩大产生稳定爆震的当量比范围,计算表明在入口射流压力1.350、0.950、0.550MPa条件下产生稳定爆震的当量比分别为0.4~5.2、0.5~4.7、0.5~3.9。  相似文献   

16.
In the current numerical study, the thermal and flow field performance of an array of confined multiple jets with air, water, and water‐Al2O3 nanofluid in the maximum crossflow configuration over the target plate with and without pin fins is investigated. The numerical results are validated with the experimental data; it is found that a reasonable prediction related to heat transfer can be made. For this study, steady‐state Reynolds‐averaged Navier‐Stokes simulations with the shear‐stress transport k ω turbulence model in ANSYS Fluent were performed. The simulations are performed with volumetric concentration ? = 0.2 % to 3% and the jet's Reynolds number Re = 15 000 to 35 000. In all cases, the jet outlet‐to‐target plate distance Z / D is 3. It is found that the increase in values of the volumetric concentration of nanoparticles results in a decrease of the Nusselt number and an increase of the convective heat transfer coefficient. This is because there is an increase in thermal conductivity of the working fluid with the increase in the volumetric concentration of nanoparticles for the same Reynolds number. About 81.5% and 89.1% enhancement in the average heat transfer flux values is observed for flat and pin fin‐roughened target plates, respectively, for ? = 3 % .  相似文献   

17.
We experimentally investigated the cellular instabilities of expanding spherical propagation of hydrogen–air, methane–air, and propane–air flames. Using image-thresholding technique, the formations and developments of a cell on a flame surface were investigated. The size of the observed cell due to the hydrodynamic instability was larger than those generated by the diffusional–thermal instability. The critical flame radius and critical Peclet number for the onset of instability were evaluated. These critical values for hydrogen–air and methane–air flames increased with increasing concentration. The values decreased with increasing initial pressure because the flame thickness decreased with increasing initial pressure. The ratio of the increase in the burning velocity increased with increasing initial pressure, although that of the hydrogen–air flames only increased with decreasing concentration. The results demonstrated that acceleration of the flame speed is affected by the intensity of the diffusional–thermal and hydrodynamic instabilities.  相似文献   

18.
Pressure drop and heat transfer characteristics of air in three annular tubes with different internal longitudinal fins were investigated experimentally at uniform wall heat flux. The tested tubes have a double‐pipe structure with the inner blocked tube as an insertion. Three different kinds of fins, plain rectangle fin, plain rectangle fin with periodical ridges and wave‐like fin, were located peripherally in the annulus. The friction factor and Nusselt number can be corrected by a power‐law correction in the Reynolds number range tested. It was found that the tube with periodical ridges on the plain fin or with wave‐like fin could augment heat transfer; however, the pressure drop was increased simultaneously. In order to evaluate the comprehensive heat transfer characteristics of the tested tubes, two criteria for evaluating the comprehensive thermal performance of tested tubes were adopted. They are: 1) evaluating the comprehensive heat transfer performance under three conditions: identical mass flow, identical pumping power, and identical pressure drop; 2) the second law of thermodynamics, i.e., the entropy generation. According to the two different evaluating methods, it was found that the tube with wave‐like fins provided the most excellent comprehensive heat transfer performance among the three tubes, especially when it was used under higher Reynolds number conditions. © 2007 Wiley Periodicals, Inc. Heat Trans Asian Res, 37(1): 29–40, 2008; Published online in Wiley InterScience ( www.interscience.wiley.com ). DOI 10.1002/htj.20186  相似文献   

19.
The flow and mixing process of unsteady jets are fundamentally analyzed by large eddy simulations. The effects of nozzle velocity and turbulence intensity on the turbulent eddy structure and mixing process between the nozzle fluid and ambient fluid were investigated. The results show that a toroidal‐shaped vortex, which emerges around the jet tip, primarily accelerates the entraining flow. Also, increasing the turbulence intensity in the nozzle encourages mixing in the jet without changing the jet‐contour. Furthermore, when the rise‐up time of the initial nozzle velocity is elongated, turbulent mixing is suppressed. © 2007 Wiley Periodicals, Inc. Heat Trans Asian Res, 36(5): 303–313, 2007; Published online in Wiley InterScience ( www.interscience.wiley.com ). DOI 10.1002/htj.20158  相似文献   

20.
When the high-pressure gas is exhausted to the vacuum chamber from the nozzle, the underexpanded supersonic jet contained with the Mach disk is generally formed. The eventual purpose of this study is to clarify the unsteady phenomenon of the underexpanded free jet when the back pressure continuously changes with time. The characteristic of the Mach disk has been clarified in consideration of the diameter and position of it by the numerical analysis in this paper. The sonic jet of the exit Mach number Me=1 is assumed and the axisymmetric conservational equation is solved by the TVD method in the numerical calculation. The diameter and position of the Mach disk differs with the results of a steady jet and the influence on the continuously changing of the back pressure is evidenced from the comparison with the case of steady supersonic jet.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号