首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Al-Cu-Mg-Ag合金热压缩变形的流变应力行为和显微组织   总被引:3,自引:0,他引:3  
采用热模拟实验对Al-Cu-Mg-Ag耐热铝合金进行热压缩实验,研究合金在热压缩变形中的流变应力行为和变形组织.结果表明:Al-Cu-Mg-Ag耐热铝合金在热压缩变形中的流变应力随着温度的升高而减小,随着应变速率的增大而增大;该合金的热压缩变形流变应力行为可用双曲正弦形式的本构方程来描述,其变形激活能为196.27 kJ/mol;在变形温度较高或应变速率较低的合金中发生部分再结晶,并且在合金组织中存在大量的位错和亚晶;随着温度的升高和应变速率的降低,合金中拉长的晶粒发生粗化,亚晶尺寸增大,位错密度减小,合金的主要软化机制逐步由动态回复转变为动态再结晶.  相似文献   

2.
以固溶态Mg-8Gd-1Er-0.5Zr(质量分数,%)合金为对象,研究了在高应变速率多向锻造过程中合金微观组织及织构的演变规律,并探讨了高应变速率多向锻造对合金力学性能的影响机制.结果表明,变形初期,合金晶粒内部的大部分{101ˉ2}拉伸孪晶被激发,随着累积应变(ΣΔε)的增加,孪晶面积分数降低,再结晶面积分数增高,再结晶机制以连续动态再结晶为主,同时伴有不连续动态再结晶和孪生诱导再结晶.合金晶粒细化分为2个阶段:当ΣΔε<1.32时,为孪晶破碎机制,晶粒尺寸由初始态的33.0μm细化至13.1μm;当ΣΔε≥1.32时,为动态再结晶细化机制,晶粒尺寸进一步细化至4.2μm.合金织构随ΣΔε增加由基面织构转变为双峰织构,且织构强度增加.ΣΔε=0.66时,多向锻造Mg-8Gd-1Er-0.5Zr合金的抗拉强度、屈服强度和延伸率分别达到295 MPa、252 MPa和13.8%,比固溶态分别提高了80%、157%和13.1%.  相似文献   

3.
7150铝合金高温热压缩变形流变应力行为   总被引:7,自引:2,他引:5  
在Gleeble-1500热模拟机上对7150铝合金进行高温热压缩实验,研究该合金在变形温度为300~450 ℃和应变速率为0.01~10 s~(-1) 条件下的流变应力行为.结果表明:流变应力在变形初期随着应变的增加而增大,出现峰值后逐渐趋于平稳;峰值应力随着温度的升高而减小,随着应变速率的增大而增大;可用包含Zener-Hollomon参数的Arrhenius双曲正弦关系来描述合金的热流变行为,其变形激活能为226.698 8 kJ/mol;随着温度的升高和应变速率的降低,合金中拉长的晶粒发生粗化,亚晶尺寸增大,再结晶晶粒在晶界交叉处出现并且晶粒数量逐渐增加;合金热压缩变形的主要软化机制由动态回复逐步转变为动态再结晶.  相似文献   

4.
采用Gleeble-3500热压缩实验机对Mg-13Gd-4Y-2Zn-0.5Zr合金在温度360~480℃、应变速率0.001~1 s-1、最大变形程度为60%的条件下进行高温压缩实验研究。分析了应变速率和变形温度对该合金在高温变形时流变应力的影响,引入温度补偿应变速率因子Z构建合金高温流变应力的本构方程;研究了合金在不同压缩条件下的组织变化及动态再结晶晶粒尺寸,为后续有限元组织模拟提供了实验依据。结果表明:该合金的真应力-真应变曲线具有动态再结晶曲线的特征。动态再结晶的再结晶晶粒尺寸随温度的降低、应变速率的增大而减小;而且峰值应力也随再结晶晶粒尺寸的减小而增大。  相似文献   

5.
AA7005铝合金的热加工变形特性   总被引:21,自引:4,他引:21  
研究了AA7005合金高温压缩变形时的流变应力、动态回复与再结晶以变形组织变化特征。合金稳态变形时,应变速度、温度和流变应力之间满足包含热激活材料常数的Arrhenius项的双曲正弦关系,变形过程为受位错增殖和相互销毁速率控制的热激活过程,螺型位错的交滑移和刃型位错的攀移为主要动态回复机制。动态回复时,形成典型的变形亚晶组织,亚晶尺寸随1nZ的减小而增大。高温低速变形条件下,合金发生局部几何动态再结晶,流变曲线呈现连续下降的特征,形成与原始纤维组织不同的细小等轴大角度再结晶晶粒。  相似文献   

6.
采用Gleeble-3500热模拟试验机进行了690合金等温恒应变速率热压缩实验,研究不同热变形条件下的流变行为和显微组织演变规律,并研究了原始晶粒尺寸对流变行为的影响。通过试验获得的峰值应力数据,建立了690合金高温热变形的本构方程。结果表明,减小原始晶粒尺寸可降低690合金在热变形过程中的变形抗力,增加动态再结晶体积分数,而原始晶粒尺寸对动态再结晶晶粒尺寸的影响则非常小。在较低温度区间,动态再结晶晶粒优先以原始晶界处产生的大量亚晶作为基础,通过亚晶界迁移形成再结晶核心;在较高热变形温度区间,再结晶晶粒主要以大角度晶界迁移的方式长大成粗晶粒。  相似文献   

7.
在变形温度为300~460℃,应变速率为0.001~1.000 s-1的条件下,采用Gleeble-1500热模拟试验机对7B50铝合金的热变形加工行为进行了研究.结果表明,7B50铝合金在热压缩变形中的流变应力随着温度的升高而减小,随着应变速率的增大而增大.对该合金进行热变形加工的适宜条件是:热压缩加工温度为380~460℃、应变速率为0.100~1.000 s-1.在变形温度较高或应变速率较低的合金中发生部分再结晶,并且在合金组织中存在大量的位错和亚晶.随着温度升高和应变速率降低,亚晶尺寸增大,位错密度减小,合金的主要软化机制逐步由动态回复转变为动态再结晶.  相似文献   

8.
在温度为623 K~773 K、应变速率为0.01 s-1~20 s-1的条件下,试验研究了Al-6.2Zn-0.70Mg-0.3Mn-0.17Zr合金热压缩变形过程中流变应力和合金组织演变行为。结果表明,合金变形过程中的峰值应力随着变形温度的增加或应变速率的减小而减小,并可以用Zener-Hollomon参数定量表征合金组织的演变行为,计算得到的热变形激活能为178.85 KJ/mol。合金热变形过程中软化机制主要为动态回复和动态再结晶。当ln Z值高时,动态回复占主导地位;当ln Z值低时,软化机制由动态回复转变为动态再结晶。再结晶晶粒尺寸随着ln Z值减小而增大。变形后合金中分布着高密度、纳米级的Al3Zr粒子,这些粒子可有效抑制合金热变形过程中再结晶。基于动态材料模型(DMM)和Prasad失稳准则,在真应变分别为0.3和0.5时建立起了合金的热加工图。当真应变为0.5时适宜的加工条件为:温度范围703 K~773 K、应变速率范围0.03 s-1~0.32 s-1,此时合金具有最大的能耗因子33%。  相似文献   

9.
在实验温度范围为380~500℃、应变速率范围为0.001~10.0 s-1,采用Gleeble-1500热模拟机,对含钪Al-Cu-Li-Zr合金的高温热变形行为进行研究,采用金相显微镜和透射电镜观察合金在压缩变形时的组织变化.结果表明:变形温度和应变速率的变化强烈影响合金的流变应力,合金的流变应力随变形速率的增加而增大,随变形温度的升高而降低,可用包含Arrhenius项的Zener-Hollomon参数描述合金在高温压缩变形时的流变应力行为.当合金在温度低于440℃变形时,合金中主要形成亚晶组织,仅发生动态回复;在ln Z≤36.7变形时,合金发生部分动态再结晶,其动态再结晶形核机制主要为晶界弓出和亚晶合并形核.  相似文献   

10.
通过室温压缩变形与再结晶退火处理研究了Inconel625高温合金冷变形及再结晶行为,采用EBSD技术分析冷变形过程中的应变分布、晶粒尺寸变化、组织与织构演变,以及冷变形Inconel625合金再结晶过程中再结晶分数、晶粒尺寸、组织及织构演变。结果表明,Inconel625合金在变形量为35%~65%时具有良好的塑性,随着变形量的增加,晶粒尺寸减小,应变分布越均匀,{111}112织构和{110}001织构逐渐减弱,而{001}110织构和{112}111织构略为增强。冷变形Inconel625合金经再结晶退火处理后,随着退火温度升高与保温时间的延长,再结晶分数增大;随着变形量的增大,Inconel 625合金发生完全再结晶时的温度降低,且发生完全再结晶时的晶粒尺寸变小,变形量为35%时,再结晶过程主要是{112}111织构和{123}634织构转变为{110}112织构、{001}100织构与{124}211织构。随着变形量增加到50%及65%时,冷变形产生的{123}634织构在再结晶过程中转变成了{124}211织构。  相似文献   

11.
研究了Mg-8Gd-0.5Zr和Mg-8Gd-3Sm-0.5Zr两种镁合金在变形温度350~500℃、应变速率0.002~0.1 s~(-1)条件下的热压缩行为,并对两种合金的流变应力以及热变形激活能进行分析计算。结果表明:由于添加了稀土元素Sm,Mg-8Gd-3Sm-0.5Zr合金的流变应力显著增加,其热变形激活能为213.69 kJ/mol,高于Mg-8Gd-0.5Zr合金的激活能(202.98 kJ/mol);当变形温度超过400℃时,两种合金都发生了明显的动态再结晶,由于Sm的加入,使Mg-8Gd-3Sm-0.5Zr合金动态再结晶晶粒尺寸显著减小,在500℃热压缩后,Mg-8Gd-3Sm-0.5Zr合金的动态再结晶晶粒平均尺寸为10μm。  相似文献   

12.
采用Gleeble-3500热模拟试验机进行高温等温压缩试验,研究了热变形参数对GH690合金晶粒细化的影响.结果表明:当变形程度较小时,随着真应变的增加,GH690合金动态再结晶的晶粒尺寸逐渐减小,但当真应变达到0.5后,随着真应变继续增加,动态再结晶晶粒尺寸变化不大;动态再结晶晶粒尺寸随变形温度的升高而增大,随应变速率的增大而减小.建立起热变形条件即Z参数与动态再结晶晶粒尺寸的关系.  相似文献   

13.
通过熔炼得到了铸态LZ61镁锂合金,对其进行了热压缩变形行为研究,分析了变形温度及应变速率对其热变形行为的影响,并建立了本构方程。结果表明,合金的应变速率敏感指数m=0.218,平均热变形激活能Q=99.21kJ/mol,合金的流变曲线均属于动态再结晶型,流变应力随着温度升高(应变速率降低)而减小。温度及应变速率对合金的动态再结晶影响显著;显微组织的变化证明了动态回复和动态再结晶的发生。铸态合金组织由α-Mg相基体及弥散分布在晶界上的β相组成。经热压缩后,在相同温度下,随着应变速率降低,组织由粗细相间的晶粒转变为细小均匀的再结晶晶粒。在同一应变速率下,随着温度升高,再结晶区域逐渐增大,晶粒明显细化。  相似文献   

14.
使用室温压缩变形与再结晶退火处理研究了Inconel 625高温合金冷变形及再结晶行为,采用EBSD技术分析冷变形过程中的应变分布、晶粒尺寸变化、组织与织构演变,分析冷变形Inconel 625合金再结晶过程中再结晶分数、晶粒尺寸、组织及织构演变。研究表明,Inconel 625合金在变形量为35%~65%时具有良好的塑性,随着变形量的增加,晶粒尺寸减小,应变分布越均匀,{111}<112>织构和{110}<001>织构逐渐减弱,而{001}<110>织构和{112}<111>织构略为增强。冷变形Inconel 625合金再结晶退火处理后,随着退火温度与保温时间的升高,再结晶分数增大;随着变形量的增大,Inconel 625合金发生完全再结晶时温度减小,且发生完全再结晶时的晶粒尺寸变小,变形量为35%时,再结晶过程主要是{112}<111>织构{123}<634>变形织构转变为{110}<112>织构、{001}<100>织构与{124}<211>织构。随着变形量增加到50%及65%时,冷变形产生的{123}<634>织构在再结晶过程中转变成了{124}<211>织构。  相似文献   

15.
采用Gleeble-3500热模拟试验机进行高温等温压缩实验,研究了变形条件对GH690合金高温变形动态再结晶的影响。结果表明:GH690合金动态再结晶过程是一个受变形温度和应变速率控制的过程,在应变速率为0.001~1s-1的实验条件下,GH690合金获得完全动态再结晶组织所需的温度随变形速率的增大而升高;动态再结晶晶粒尺寸随变形温度升高而增大。采用力学方法直接从流变曲线确定了GH690合金发生动态再结晶的临界应变量,并回归出临界应变量与Z参数的关系式:εc=1.135×10-3Z0.14233。GH690合金的主要动态再结晶机制是原始晶界凸起形核的不连续动态再结晶机制(DDRX),而新晶粒通过亚晶逐渐转动而形成的连续动态再结晶机制(CDRX)则起辅助作用。  相似文献   

16.
采用等温轴对称热压缩实验对Al-Zn-Mg-0.25Sc-Zr合金的热变形行为和微观组织演化进行研究。变形温度为340~500°C,应变速率为0.001~10 s-1。结果表明:稳态流变应力随着应变速率的增加和变形温度的降低而增大,该合金的流变应力行为可用双曲正弦形式的本构方程来描述,其变形激活能为150.25 kJ/mol。在变形温度较高和应变速率较低(即Z参数较低)的条件下,动态再结晶更容易发生。随着Z参数的变小,合金的主要软化机制由动态回复转变为动态再结晶,合金中的位错密度降低,亚晶尺寸增大。  相似文献   

17.
在Gleeble-1500热模拟机上对室温120°模具等径弯曲通道变形(ECAP)制备的平均晶粒尺寸为200nm的工业纯钛(CP-Ti)进行等温变速压缩实验,研究超细晶(UFG)工业纯钛在变形温度为298~673K和应变速率为10-3~100s-1条件下的流变行为。利用透射电子显微镜分析超细晶工业纯钛在不同变形条件下的组织演化规律。结果表明:流变应力在变形初期随应变的增加而增大,出现峰值后逐渐趋于平稳;峰值应力随温度的升高而减小,随应变速率的增大而增大;随变形温度的升高和应变速率的降低,应变速率敏感性指数m增加,晶粒粗化,亚晶尺寸增大,再结晶晶粒数量逐渐增加;超细晶工业纯钛热压缩变形的主要软化机制随变形温度的升高和应变速率的降低由动态回复逐步转变为动态再结晶。  相似文献   

18.
对固溶态Mg-8Sn-1Zn-1Al合金在200℃和10 s-1条件下的压缩行为进行了实验研究,主要分析了不同应变阶段合金的组织及织构演变。结果表明:随着应变量的增加,孪晶的面积分数不断增大,而动态析出的Mg2Sn相的面积分数却不断减小。变形过程并不改变织构的类型,只是影响织构的强度。基面织构的强度与孪晶的数量密切相关,而柱面织构的强度可能与动态沉淀的取向有关。  相似文献   

19.
7B50铝合金热变形组织演变   总被引:2,自引:0,他引:2  
周坚  潘清林  张志野  陈琴 《热加工工艺》2012,41(2):20-23,132
利用Gleeble-1500热模拟试验机对7B50铝合金进行了变形温度300~460℃、应变速率0.001~1 s-1条件下的等温压缩试验,通过金相显微镜(OM)和透射电镜(TEM)等手段,研究分析了该合金在变形过程中热变形参数对微观组织的影响。结果表明:在变形初期,流变应力随应变的增加而增大,达到峰值后逐渐趋于平稳;应力峰值随温度的升高而减小,随应变速率的提高而增大;当变形温度较低或应变速率较高时,合金仅发生了动态回复,且合金组织中存在大量的位错和亚晶;随着温度的升高和应变速率的降低,合金中的主要软化机制由动态回复逐渐转变为动态再结晶。  相似文献   

20.
利用Gleeble-1500热模拟机对Al-Mg-Si-Cu合金进行高温压缩变形模拟实验,分析了变形温度、应变速率和应变量对显微组织的影响。结果表明:在应变速率和应变量一定时,变形温度较低时(380、430℃),合金变形带中未出现明显的再结晶晶粒,且有大量的位错杂乱的缠结在第二相粒子周围,形成位错塞积;变形温度较高时(480、530℃),变形带间出现了许多动态再结晶晶粒,晶粒的数量随着温度的升高而增加同时位错数量显著减少。在合金变形温度为480℃、应变量0.76时,再结晶晶粒随着应变速率升高,其数量有所增加而平均尺寸有所减小,再结晶程度增强。当合金在较低温度、较高应变速率和较小应变量下变形时,Al-Mg-Si-Cu合金主要软化机制为动态回复;在变形温度较高,应变速率较低,应变量较大时,合金的动态软化机制主要是动态再结晶。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号