共查询到18条相似文献,搜索用时 76 毫秒
1.
采用熔融共混法制备了尼龙6/苯乙烯-马来酸酐共聚物/N-苯基马来酰亚胺共混物(PA6/SMA/N-PMI),并利用DSC、TGA及力学性能测试等手段研究了SMA用量对PA6/SMA/N-PMI共混物熔融结晶行为、热学性能以及力学性能的影响。结果表明,共混物的最大分解温度较纯PA6有较大提高;SMA用量的增加,共混物的结晶温度、结晶度以及熔融焓均先降低再升高;当SMA用量为5份时,共混物的弯曲强度、弯曲模量以及热变形温度均达到最大值,分别为113.8、3 053 MPa及61.3℃,较纯PA6分别提高了25.1%、28.0%及19.0%;拉伸强度在SMA用量为7.5份时达到最大值81.4 MPa,较纯PA6提高了17.1%。 相似文献
2.
以聚酰胺6(PA6)为基体、自制N-苯基马来酰亚胺-马来酸酐二元共聚物(NMA)为耐热改性剂,通过熔融共混法制备了PA6//NMA共混材料。并采用差示扫描量热法(DSC)、热重分析(TGA)、热变形温度及力学性能测试等手段研究了NMA用量对PA6/NMA共混物熔融结晶行为、热性能及力学性能的影响。结果表明:随着NMA用量的增加,PA6/NMA共混物的熔融温度、结晶温度、结晶度以及熔融焓均逐渐降低,而且共混物的最大分解温度较纯PA6显著提高;随着NMA用量的增加,PA6/NMA共混物的力学性能及热性能均明显改善,其中当NMA用量为10份时,共混物的弯曲强度、弯曲模量、拉伸强度及热变形温度分别增至113.8 MPa、3 146 MPa、80.4 MPa以及71.5℃,较纯PA6提高了25.1%、31.9%、15.7%和27.5%;另外,随着NMA用量的增加,共混物的熔体流动速率(MFR)大幅下降,其中当NMA用量增至10份时,共混物的MFR降至5.3 g/10min。 相似文献
3.
采用熔融共挤制备了尼龙6(PA6)/苯乙烯-马来酸酐共聚物(SMA)共混物,利用差示扫描量热法、热重分析、热变形温度测试及力学测试等手段研究了SMA含量对PA6/SMA共混物熔融结晶行为、热性能及力学性能的影响。结果表明,SMA的加入使共混物的熔融温度、结晶温度及结晶度降低;当SMA用量为5份时,共混物最大分解温度较纯PA6提高了33.5℃;共混物的弯曲强度和弯曲模量在SMA用量为2.5份时达到最大,分别为115.0、3 227 MPa,比纯PA6提高了26.4%、37.0%,拉伸强度在SMA用量为5份时达到最大87.5 MPa,比纯PA6提高了25.9%。 相似文献
4.
采用熔融共混法制备了聚酰胺6/苯乙烯-马来酸酐共聚物/长玻璃纤维(PA6/SMA/LGF)复合材料,利用差示扫描量热法(DSC)、热重分析(TGA)、热变形温度及力学性能测试等手段研究了LGF含量对PA6/SMA/LGF复合材料熔融结晶行为、热性能及力学性能的影响。结果表明:随着LGF含量的增加,PA6/SMA/LGF复合材料的结晶温度、结晶度以及熔融焓均先升高再降低,而且复合材料的最大分解温度较纯PA6显著提高;另外,随着LGF含量的增加,PA6/SMA/LGF复合材料的热性能及力学性能均明显改善,其中当LGF含量为27%时,复合材料的热变形温度、弯曲强度、弯曲模量、拉伸强度和冲击强度分别增至206.0℃、227.8 MPa、7 335 MPa、180.6 MPa和18.7 kJ/m2。 相似文献
5.
采用自制耐热改性剂N-苯基马来酰亚胺-马来酸酐二元共聚物(NMA)与纳米有机蒙脱土(nanoOMMT)复配对聚酰胺(PA)6进行共混改性,研究了不同m(NMA)∶m(nano-OMMT)对PA 6熔融结晶行为、热性能及力学性能的影响。结果表明:nano-OMMT剥离分散在PA 6基体中;随着nano-OMMT含量增加,PA 6/NMA/nano-OMMT复合材料的熔融温度、结晶温度、结晶度及熔融焓均先升后降;m(NMA)∶m(nano-OMMT)为8∶2时,复合材料弯曲强度、弯曲模量、拉伸强度和负荷变形温度均达最大,分别为117.1,3 301,80.5 MPa及82.7℃,较不加nano-OMMT分别提高21.2%,25.0%,12.9%,27.8%。 相似文献
6.
N-苯基马来酰亚胺与马来酸酐的共聚物(NMA)对尼龙(PA)6具有良好的耐热改性作用,纳米Si O2能够较好地改善PA6的力学性能。采用自制的NMA与纳米Si O2以不同质量配比复配,对PA6进行共混改性,利用差示扫描量热法、热重分析、热变形温度和力学性能等表征方法研究了不同复配比例对PA6热性能及力学性能的影响。结果表明,随着纳米Si O2含量增加,PA6/NMA/纳米Si O2复合材料的熔融温度、结晶温度、结晶度及熔融焓均呈现先上升后下降的趋势;当NMA与纳米Si O2的质量比为10∶0时,复合材料的热稳定性最好;当NMA与纳米Si O2的质量比为8∶2时,复合材料的弯曲强度、弯曲弹性模量、拉伸强度和热变形温度均达到最大值,分别为108.3,2 989,77.6 MPa以及68.4℃,较纯PA6分别提高了19.0%,25.3%,11.7%和19.2%。随着纳米Si O2含量的增加,复合材料的熔体流动速率呈现先增加后减小的趋势。 相似文献
7.
采用熔融共混法制备了苯乙烯-马来酸酐共聚物(SMA)增容的聚酰胺6/丙烯腈-丁二烯-苯乙烯共聚物(PA6/ABS)共混物,用扫描电镜(SEM)对PA6/ABS共混物结构进行了表征.结果表明,随着SMA含量的增加,PA6/ABS共混体系的橡胶相粒径减小.橡胶颗粒的多分散系数保持不变,基体层厚度逐渐减小;PA6/ABS共混体系的脆韧转变温度随SMA含量的增加先减小后增加. 相似文献
8.
采用熔融挤出的方法制备了聚酰胺6/氯化锂/苯乙烯接枝马来酸酐(PA6/LiCl/SMA)复合材料,研究了SMA用量对PA6/LiCl/SMA复合材料的结晶熔融行为及性能的影响。结果表明:SMA的加入会促进Li+与PA6中酰胺基团的络合作用,破坏PA6分子链间的氢键,另外SMA自身能与PA6分子链发生接枝反应,在双重作用下使复合材料的熔点降低到185.53℃。通过DSC和XRD发现:SMA的加入会促使PA6/LiCl/SMA复合材料的结晶形态由α晶型向γ晶型转变,并能有效提高复合材料的力学性能,当SMA用量为3 phr时,其拉伸强度比未添加SMA时提高了53.02%,冲击强度也有所提高,但复合材料的熔体流动速率会有所下降。 相似文献
9.
谭志勇;李丹;刘庆辉;阙盼;吴广峰 《中国塑料》2012,26(1):35-40
将聚酰胺6(PA6)与市售的丙烯腈-丁二烯-苯乙烯(ABS)树脂共混,制备PA6/ABS共混物。研究了ABS树脂的用量对PA6/ABS共混物力学性能的影响;采用苯乙烯及丙烯腈共聚物(SAN)和ABS粉料熔融共混制得不同胶含量的ABS/SAN共混物。研究了不同胶含量的ABS/SAN共混物对PA6/ABS共混物力学性能的影响。在PA6/ABS/SAN共混物中引入苯乙烯-丙烯腈-马来酸酐共聚(SAM)树脂取代部分SAN树脂,研究了SAM树脂的加入及引入顺序的不同对共混物性能的影响。结果表明, ABS树脂的用量在50%~60%左右时共混物性能最佳。随ABS/SAN共混物胶含量提高,共混物的拉伸强度、弹性模量、弯曲强度和弯曲模量逐渐降低。随SAM树脂替代SAN量增加,共混物的拉伸和弯曲性能先降低后增加。但共混物熔体流动速率降低明显,而SAM树脂的引入顺序对共混物的力学性能影响不大。 相似文献
10.
接枝率对PVC/PA6-g-SMA共混物结构与性能的影响 总被引:2,自引:0,他引:2
王彩红;周秉正;何敏;鲁圣军;于杰 《中国塑料》2009,23(3):37-40
采用熔融共混方法制备了聚氯乙烯(PVC)与不同接枝率苯乙烯-马来酸酐共聚物(SMA)接枝改性聚酰胺6(PA6-g-SMA)的共混物,研究了PA6-g-SMA接枝率对PVC/PA6-g-SMA共混物力学性能及凝聚态结构的影响。结果表明,接枝率越高,PA6-g-SMA与PVC的相容性越好,在PVC基体中能以更小的相畴均匀分散,对PVC的增韧增强作用越明显;当PA6-g-SMA的接枝率为5.12 %,添加量为15 %(质量分数,下同)时,共混物的冲击强度为64.7 kJ/m2,拉伸强度为55 MPa。 相似文献
11.
以细菌纤维素(BC)作为一种辅助增强纤维,对聚酰胺6/玻纤(PA6/GF)复合材料进行进一步增强改性,并对PA6/GF/BC复合材料的力学性能进行了研究。结果表明:当GF用量为10%、BC用量为0.4%时,PA6/GF/BC复合材料的结晶度提高到26.44%,拉伸强度比PA6/GF提高了13.29%,与GF用量为20%的PA6/GF复合材料性能相当,说明BC在PA6改性过程中起到一定的轻量化作用。 相似文献
12.
13.
将聚酰胺6(PA6)、三元乙丙橡胶/三元乙丙橡胶接枝马来酸酐(EPDM/EPDM-g-MAH)弹性体和有机蒙脱土(OMMT)共混,制备了PA6/弹性体/OMMT三元复合材料,并研究了该复合材料的力学性能。结果表明:当OMMT用量为2%时,PA6分子插层进入到OMMT片层中,当OMMT用量增至5%时则得到剥离型复合材料;随着OMMT用量的增加,PA6/弹性体/OMMT复合材料的冲击强度先增大后减小,其中当OMMT用量为2%时,复合材料的冲击强度达到54.29 kJ/m2,是纯PA6冲击强度(4.15 kJ/m2)的13.08倍;随OMMT用量的增加,复合材料的拉伸强度、弯曲强度和弯曲模量均逐渐增大,而断裂伸长率则随着OMMT用量的增加呈先增大后减小的趋势,并且在OMMT用量为2%时出现最大值。另外当OMMT用量较少时(低于5%),其对弹性体粒径的影响不大,此时弹性体粒径较小;而当OMMT用量超过5%时,OMMT进入弹性体中并形成了核壳结构,增加了弹性体的模量和粒径,从而使复合材料的冲击韧性降低。 相似文献
14.
研究了纳米SiO2和马来酸酐接枝POE(POE-g-MAH)对PA6/POE-g-MAH/纳米SiO2复合材料形态和力学性能的影响.结果表明,纳米SiO2含量小于或等于1份时,只有少量团聚;超过1份后,纳米SiO2有明显团聚现象;纳米SiO2和POE-g-MAH具有一定的协同增韧作用,在PA6/POE-g-MAH/纳米SiO2质量比为85/15/1时,复合材料的冲击强度达到最大,为PA6的10倍;复合材料的低温冲击强度也得到明显提高,达到PA6的3.3倍. 相似文献
15.
采用熔融插层法制备了尼龙6(PA6)/蒙脱土插层复合材料,通过X射线衍射仪、透射电镜等表征手段研究了该复合材料的微观结构,采用锥形量热仪、拉伸测试仪等测试了材料的阻燃性能、力学性能以及热变形温度。结果表明,有机蒙脱土片层的间距扩大了,PA6插入了有机蒙脱土片层之间。PA6/蒙脱土插层复合材料具有较低的热释放速率和质量损失,并且当有机蒙脱土质量分数为5%~7%时,该复合材料的综合性能最好。 相似文献
16.
17.
PA66/HA复合生物材料的力学性能研究 总被引:6,自引:0,他引:6
研究了纳米羟基磷灰石(nHA)的含量、生理盐水及HA的粒径对聚酰胺(PA66)/nHA复合材料力学性能的影响,并用扫描电子显微镜观察了复合材料的断面形态。结果发现,随着nHA含量的增加,PA66/nHA复合材料的弹性模量、弯曲强度、冲击强度和压缩强度等力学性能都有不同程度的增加。在生理盐水中浸泡后,PA66/nHA复合材料的力学性能有所降低,但韧性增强。HA粒径的大小对复合材料的力学性能影响很大,PA66/nHA复合材料的力学性能比PA66/微米级HA复合材料的要好。 相似文献
18.
以矿渣微粉(SP)和玻璃纤维(GF)为填料,经共混、挤出造粒、注射成型工序制备聚已内酰胺(PA6)/GF/SP三元复合材料,采用扫描电子显微镜观察断口形貌,通过检测复合材料试样的拉伸强度、冲击强度研究不同GF/SP配比比例以及SP的粒径对复合材料的力学性能影响。结果表明,当GF/SP配比填料总量定为30 %(质量分数,下同),SP与GF比例为1∶3时,平均粒径为7 μm的SP有最好的增强效果,拉伸强度为96.8 MPa;当SP平均粒径为15 μm时,三元复合材料具有最佳的冲击强度,比纯PA6提高了32.4 %,达到8.31 kJ/m2。 相似文献