首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 10 毫秒
1.
2.
Carbon ion beam stripper foils were fabricated from diamond films synthesized on silicon via chemical vapor deposition. Fine-grained polycrystal diamond foils with decent surface flatness were obtained using a nucleation enhancement pretreatment process. Freestanding diamond foils were formed by etching a portion of the silicon substrate on which the diamond films well-adhered. In preliminary lifetime evaluations, the 1–3 μm-thick diamond foils lasted between 20 and 420 min for 3.2 MeV Ne+ion-beam charge stripping.  相似文献   

3.
Thin carbon stripper foils used in high-intensity proton accelerators and heavy-ion accelerators must have long lifetimes. Thin carbon foils were fabricated by ion-beam sputtering using reactive and inert gas ions. The lifetime of the foils was measured using a KEK 650-keV high-intensity DC H (negative hydrogen ion) beam; changes in the foil thickness and surface deformations during irradiation were investigated. The lifetime of a typical stripper foil fabricated by heavy-ion-beam (Ar and Kr) sputtering was 60-70 times longer than that of the best commercially available foils. This paper reports a fabrication method for carbon stripper foils, along with an investigation of their lifetimes and changes in foil thickness during beam irradiation.  相似文献   

4.
硅掺杂类金刚石薄膜表面性能研究   总被引:1,自引:0,他引:1  
本文使用原子力显微镜考察了硅掺杂类金刚石薄膜的表面形貌及粗糙度,同时分析了薄膜表面的粘附力和微观摩擦力学性能。实验表明,随着基底负偏压的增加,薄膜的表面粗糙度值逐渐减小;摩擦力和外加载荷成线性关系,且粘附力是微小载荷下影响固体滑动摩擦力的主要因素,并采用最佳拟合直线的斜率表征出样品的摩擦系数的大小。  相似文献   

5.
一种新型的光学增透膜——DLC及改性DLC薄膜   总被引:3,自引:0,他引:3  
光学增透薄膜是一种很重要的光学材料,传统的MgF2和ZnS增透膜具有强度低的缺陷,已经不能满足现代科技进步的需要。回顾了近年来关于DLC薄膜和CN薄膜光学性能的研究情况,讨论了改性的DLC薄膜用做增透膜的可行性。从理论和实践两个方面进行了探讨,结果表明DLC薄膜和CN薄膜在光学增透领域具有广阔的应用前景。  相似文献   

6.
We control the amount of carbon buildup on slackened thin cluster carbon stripper foils (less than 3.5 μg/cm2) by heating with a high-power infrared lamp during beam bombardment. Foil lifetime measurements were performed using 2.0±0.5 μA beams of 3.2 MeV Ne+ ions and quantified as the total charge/area before breakage. Lifetimes were obtained up to 1286 mC/cm2 at maximum and 1139 mC/cm2 on the average; these values are, respectively, approximately 51 times at maximum and 46 times on average greater than the best commercially available foils, when used unheated and unslackened.  相似文献   

7.
张婷  何娟  任瑛  邹文俊 《材料导报》2016,30(1):84-87, 95
类金刚石薄膜由于存在很大的残余应力,在实际应用中薄膜易产生裂纹、破裂甚至脱落。这些问题导致类金刚石薄膜在使用过程中过早失效。因此,缓解残余应力是类金刚石薄膜急需解决的问题和实际应用的需要。介绍了类金刚石薄膜残余应力的产生,对国内外调控残余应力的途径以及研究进展进行综述。使用有限元分析法模拟薄膜的残余应力可为类金刚石薄膜的制备和工艺设计提供参考。  相似文献   

8.
Fine-pitch gas electron multiplier (GEM) foils have been produced for cosmic X-ray polarimeters using a carbon dioxide laser etching technique. The finest hole pitch of the foil which can be produced repeatedly is and the smallest hole diameter is . The electron amplification factor was measured as a function of applied voltage. The behavior of the factor is almost the same as the -pitch standard foil fabricated by CERN. Our GEMs had no rate-dependent gain instability, which is expected of the GEMs having holes of good cylindrical geometry. The amplification factor of the foil in a mixture of 70% argon and 30% carbon dioxide reaches about 5000 without any micro-discharge at a voltage of 570 V between foil electrodes.  相似文献   

9.
Fatigue and fracture properties of thin metallic foils   总被引:1,自引:0,他引:1  
Metallic thin foils are essential structural parts in microsystems, which may be subjected to fatigue loading caused by thermal fluctuations and mechanical vibrations influencing their reliability in numerous engineering applications. It is well known that the fatigue properties of bulk material cannot be adopted for small scaled structures. For a better understanding of the `size-effect' in the present investigation fatigue crack growth near threshold in the high cycle fatigue regime and associated fracture processes were studied. Free-standing rolled and electrodeposited Cu-, Mo- and Al foils of thickness from 20 m to 250 m in different conditions have been tested in a special experimental set up operating at R=–1 and a testing frequency of 20 kHz. At a given constant strain value the fatigue crack growth behaviour has been recorded accompanied by intermittent observation of the change of the dislocation structure in the vicinity of the growing crack by use of the electron channeling contrast imaging (ECCI)-technique in a scanning electron microscope (SEM). In a load shedding technique fatigue threshold stress intensity factor values have been derived and compared with data of bulk material. Typical crack growth features were detected depending on thickness and grain sizes of the foils. Various criteria (compliance, extent of plastic zones and plastic strain gradients) were selected for the explanation of this anomalous behaviour. Additionally fractomicrographs of uniaxial strained and fatigued foils have been studied to obtain further insight of the effect of dimensional constraint.  相似文献   

10.
Metallic thin foils are essential structural parts in microsystems,which may be subjected to fatigue loading caused by thermal fluctuations and mechanical vibrations influencing their reliability in numerous engineering applications. It is well known that the fatigue properties of bulk material cannot be adopted for small scaled structures. For a better understanding of the `size-effect' in the present investigation fatigue crack growth near threshold in the high cycle fatigue regime and associated fracture processes were studied. Free- standing rolled and electrodeposited Cu-, Mo- and Al foils of thickness from 20 m to 250 m in different conditions have been tested in a special experimental set up operating at R=–1 and a testing frequency of 20 kHz. At a given constant strain value the fatigue crack growth behaviour has been recorded accompanied by intermittent observation of the change of the dislocation structure in the vicinity of the growing crack by use of the electron channeling contrast imaging (ECCI)-technique in a scanning electron microscope (SEM). In a load shedding technique fatigue threshold stress intensity factor values have been derived and compared with data of bulk material. Typical crack growth features were detected depending on thickness and grain sizes of the foils. Various criteria (compliance, extent of plastic zones and plastic strain gradients) were selected for the explanation of this anomalous behaviour. Additionally fractomicrographs of uniaxial strained and fatigued foils have been studied to obtain further insight of the effect of dimensional constraint.  相似文献   

11.
A double-layered film of tungsten-containing diamond-like carbon (W-DLC) and DLC, (W-DLC)/DLC, was investigated. A film of 1.6 µm in thickness was deposited onto silicon substrate. The investigate double-layered coating was deposited by using the combination of PECVD and co-sputtering of tungsten metal target. Structure, interface and chemical bonding state of the investigated film were analyzed by Transmission electron microscope (TEM) and X-ray photoelectron spectroscopy (XPS). From the results of the analyses, the structure of double-layered film is that amorphous phase of carbon is continued from DLC to W-DLC and tungsten metal clusters are dispersed in W-DLC layer.  相似文献   

12.
A novel process for polyethylene terephthalate (PET) surface modification with a silica-like thin layer is proposed. 3-Aminopropyltrimethoxysilane was employed to react with acetone to form dimethyliminopropyltrimethoxysilane (DIPTMS) after aging for 10 days at room temperature. After hydrolysis of alkoxy groups in DIPTMS, dimethylimine-modified silica clusters occurred resulting in an increase of the solution viscosity. Consequently, a dense and homogeneous thin layer was easily dip-coated onto a PET film. After heat treatment at 150 °C, a smooth, flexible and transparent silica-like film (about 70 nm thick) was formed via dehydration and condensation. The surface of the PET dramatically changed from hydrophobic (water contact angle: 70±2°) to hydrophilic (45±3°). As an attempt for application, a dense film of lithium metasilicate (Li2O·2SiO2·nH2O) was successfully prepared by dip coating on the modified PET film, which appeared very low oxygen permeability of about 0.17 cm3/m2 day atm at 23 °C and 85% humidity.  相似文献   

13.
Ti掺杂及Ti应力缓和层对类金刚石薄膜附着力的影响   总被引:4,自引:0,他引:4  
研究了Ti掺杂对磁控溅射类金刚石(DLC)薄膜附着力及硬度的影响,同时在Ti掺杂类金刚石(Ti-DLC)薄膜的基础上,通过引入Ti应力缓和层制备了Ti/Ti-DLC/Ti/Ti-DLC……软硬交替多层薄膜,研究了Ti应力缓和层对进一步提高薄膜附着力特性的作用.采用纳米划痕仪和显微硬度计分析测试了薄膜的附着力和硬度.研究表明,金属Ti的掺杂有利于DLC薄膜附着力特性的改善,但对硬度有一定的影响.Ti应力缓和层的导入进一步改善了Ti-DLC薄膜的附着力特性,使其达到或超过了TiN薄膜的水平,对于附着力的改善Ti应力缓和层存在最佳的厚度值.采用特殊的变周期多层结构设计即在应力集中的膜基界面附近采用较小的调制周期,薄膜项层附近采用较大的调制周期不但可以保持足够的附着力,还可维持Ti-DLC薄膜原有的硬度.  相似文献   

14.
In this paper, based on the gas sensitive mechanism of metal oxide semiconductor thin film, the law of gas diffusion, first order aerodynamics and the relative assumption, we present a simple model for the simulation of the steady state gas sensitivity of metal oxide thin film. Our model provides a general mathematical relationship between the steady state sensitivity and the film thickness. The metal oxide semiconductor thin film is supposed to be formed with a finite number of independent layers. Each layer consists of ideally spherical grains with close-packed structure. The target gas is assumed to affect the inner layers either by penetrating through the grain boundaries or by direct interacting with each layer surface. Besides we propose a model to analyze the thickness dependence of the response time for metal oxide gas-sensing film.  相似文献   

15.
Thin foils having thickness values of 200 μm and less are commonly applied in the food industries, medical applications and more. Small punch technique (SPT) is a promising mechanical testing method for specimens thicker than 250 μm, in which a formulation correlating the measured parameters to standard tensile properties was previously reported. The current research is focused, for the first time, on the correlation between SPT and tensile mechanical properties of SS-316L thinner specimens in the range of 100–200 μm. It is demonstrated by finite-element-analysis, that the mechanical response of thin foils having thicknesses in the range of 25–500 μm can be divided into three categories. For specimens thicker than 300 μm, thin plate bending equations that were applied previously for thick specimens, are still valid, while for thinner specimens this theory fails to provide adequate correlation between SPT and tensile yield stress. For specimens thinner than 50 μm it was identified that equations derived from membrane solution should be employed rather than classical plate theory. For intermediate thickness values in the 50–300 μm range, a “transition-zone” was identified between plate and membrane-like mechanical responses. For the lower region, 50–100 μm, an analytical expression correlating the measured SPT parameters and the tensile yield stress is currently proposed.  相似文献   

16.
A novel plastic substrate for flexible displays was developed. The substrate consisted of a polycarbonate (PC) base film coated with a gas barrier layer and a transparent conductive thin film. PC with ultra-low intrinsic birefringence and high temperature dimensional stability was developed for the base film. The retardation of the PC base film was less than 1 nm at a wavelength of 550 nm (film thickness, 120 µm). Even at 180 °C, the elastic modulus was 2 GPa, and thermal shrinkage was less than 0.01%. The surface roughness of the PC base film was less than 0.5 nm. A silicon oxide (SiOx) gas barrier layer was deposited on the PC base film by a roll-to-roll DC magnetron reactive sputtering method. The water vapor transmission rate of the SiOx film was less than 0.05 g/m2/day at 40 °C and 100% relative humidity (RH), and the permeation of oxygen was less than 0.5 cc/m2 day atm at 40 °C and 90% RH. As the transparent conductive thin film, amorphous indium zinc oxide was deposited on the SiOx by sputtering. The transmittance was 87% and the resistivity was 3.5 × 10− 4 ohm cm.  相似文献   

17.
Stainless steel foils on which flexible display devices and integrated solar modules are prepared need to be coated by barrier layers for electrical insulation. In this study, SiOx barrier layer was prepared on steel foils (SUS 304) by ion beam assisted deposition, Sol-gel deposition and plasma enhanced chemical vapor deposition, respectively. The electrical properties of the SiOx films, such as resistance, reactance, leakage current density, breakdown field strength and performance index were investigated, and the bending properties were evaluated by bending tests. The best electrical insulation and bending properties of barrier could be achieved with 4 μm thick SiOx layer prepared by plasma enhanced chemical vapor deposition.  相似文献   

18.
Noble metals such as Pt are a perfect substrate for the catalytic growth of monolayer graphene. However, the requirements of the subsequent transfer process are not compatible with the traditional etching method. In this work, we find that the interaction of graphene with Pt foil can be weakened through the intercalation of carbon monoxide (CO) under ambient pressure. This intercalation process occurs on both hexagonal-shape graphene islands and irregular graphene patches on changing the CO partial pressure from 0 to 0.6 MPa, as observed by scanning electron microscopy (SEM), Raman spectroscopy and X-ray photoemission spectroscopy. We demonstrate that, on a practical timescale, the intercalation ratio is proportional to the partial pressure of CO. Furthermore, we develop a clean transfer method of CO-intercalated graphene with water as a peeling agent. We show that this method enables the transfer of tens of micrometer-scale graphene patches onto SiO2/Si, which are free from metal or oxide particle contamination. This transfer method should be a significant step towards the dean transfer of graphene, as well as the recydable use of noble metal substrates.  相似文献   

19.
Thin films of sodium montmorillonite clay and cationic polyacrylamide were grown on a polyethylene terephthalate film using layer-by-layer assembly. After 30 clay–polymer layers are deposited, with a thickness of 571 nm, the resulting transparent film has an oxygen transmission rate (OTR) below the detection limit of commercial instrumentation (< 0.005 cc/m2/day/atm). This low OTR, which is unprecedented for a clay-filled polymer composite, is believed to be due to a brick wall nanostructure comprised of completely exfoliated clay in polymeric mortar. With an optical transparency greater than 90% and potential for microwaveability, this thin composite is a good candidate for foil replacement in food packaging and may also be useful for flexible electronics packaging.  相似文献   

20.
Gas flow through an orifice can be determined with high accuracy based only on the geometrical dimensions of the orifice and the upstream and downstream pressures when the flow is purely molecular. An orifice with a number of smaller openings in parallel can be used to maintain the molecular flow at higher pressure and high total conductance of the orifice. The question of how close such openings can be without influencing each other is important for practical design. This problem was studied experimentally. Changes in the total conductance versus pressure were followed for a set of multi-opening orifices with regularly arranged differently spaced circular openings. The experimental results show that no influence on the flow through a single opening can be observed at sufficiently distant opening, over the entire pressure range. At centre-to-centre distances shorter than approximately three times the diameter of the opening, notable differences in the total conductance can be seen in the pressure range where the transition from the molecular to transitional flow regime occurs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号