首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 12 毫秒
1.
57Co-Mössbauer emission spectroscopy (MES) has been used to study the oxidation of cobalt as a deactivation mechanism of high loading cobalt based Fischer–Tropsch catalysts for the gas-to-liquids process. It was reported previously [Catal. Today 58 (2000) 321; Proceedings of the International Symposium on the Industrial Applications of the Mössbauer Effect, 13–18 August, 2000, Virginia Beach, VA] that oxidation was observed at atmospheric pressure under conditions that were in contradiction with the bulk cobalt phase thermodynamics. A high-pressure MES cell was designed and constructed, which created the opportunity to study the oxidation of cobalt based Fischer–Tropsch catalysts under realistic synthesis conditions. The cobalt catalyst preparation procedure was investigated by means of 57Fe-Mössbauer absorption spectroscopy, applying 57Fe as a probe atom. Initial results indicate, although not yet conclusive, that a 57Co-MES catalyst can be prepared from the industrial prepared standard Co catalyst by an additional simple incipient wetness impregnation procedure.  相似文献   

2.
Changes of activity and selectivity during the initial phases of Fischer–Tropsch (FT) synthesis have been measured with three promoted cobalt catalysts. It is shown that the FT regime is formed in situ in a slow process lasting several days. A “construction” of the “true FT catalyst” is therefore assumed. Taking into account complementary investigations, this construction is assigned to the segregation of the catalyst surface caused by strong CO chemisorption. This process would be accompanied by an increase of the number of active sites and their disproportionation into sites of higher and lower coordinations, which would exhibit different catalytic properties. The observed initial activity and selectivity changes are well to be explained with this concept.  相似文献   

3.
The effect of adding zirconia to the alumina support on supported cobalt Fischer–Tropsch catalysts has been studied. At 5 bar and H2:CO ratio 9:1 zirconia addition to the support leads to a significant increase in both activity and selectivity to higher hydrocarbons as compared to the unmodified catalysts. Reducibility and cobalt dispersion on the other hand are not improved by the presence of zirconia compared to the unmodified catalysts. SSITKA measurements have been performed in order to determine the intrinsic activity per active site. At constant temperature, zirconia-modified and unmodified catalysts showed basically the same intrinsic activity. Similar results were obtained with a noble metal (Pt) promoted catalyst. The promoting effect appears to be mainly due to coverage effects rather than a change in the intrinsic activity of the active sites. The turnover frequencies were found to be independent of pressure but strongly temperature dependent. However, the increase in turnover frequency did not account for the entire increase in reaction rate with temperature. This indicates that also the coverage of reactive intermediates increases with increasing temperature.  相似文献   

4.
The type of the precipitating agent used during the preparation of a precipitated iron-based Fischer–Tropsch (FT) catalyst affects the catalyst pore structure, crystallite size, phase composition and catalytic behavior. Catalysts prepared by using precipitating agents, that contain carbonate ions, have pores that are larger than those of catalysts prepared using precipitating agents that contain hydroxides. Precipitation at pH>8, using aqueous NH3 solution as a precipitating agent, results in the formation of large crystallites of FeOOH, which are not observed when Na2CO3 and K2CO3 are used. Higher % CO conversion during FT synthesis was observed with the catalyst prepared by using aqueous NH3 solution. However, this is correlated with a low selectivity for the formation of olefins. For all catalysts, in situ Mössbauer spectra recorded during FT synthesis show that the % CO conversion increases with the formation of iron carbides, viz. ′-Fe2.2C and χ-Fe2.5C.  相似文献   

5.
Cobalt catalysts (2–10 wt% Co) supported on silica-rich MCM-22 zeolites have been prepared by impregnation with aqueous Co(NO3)2 solutions. The catalysts are characterized by X-ray fluorescence (XRF), X-ray diffraction (XRD), nitrogen adsorption, solid state nuclear magnetic resonance (NMR), scanning electron microscopy (SEM), high-resolution transmission electron microscopy (TEM) and X-ray photoelectron spectroscopy (XPS). The catalytic properties for the Fischer–Tropsch synthesis (FTS) at 280 °C, 12.5 bar and H2/CO = 2 are evaluated. The catalysts supported on MCM-22 exhibit the highest selectivity to long-chain (C5+) hydrocarbons when MCM-22 supports are synthesized with the appropriate Si/Al ratio.  相似文献   

6.
A. M. Saib  M. Claeys  E. van Steen   《Catalysis Today》2002,71(3-4):395-402
The influence of the effect of average pore diameter of silica support on the physical and chemical properties of supported cobalt catalysts and their performance in the Fischer–Tropsch synthesis was investigated. Silicas with different mean pore diameter (20, 40, 60, 100 and 150 Å) were impregnated with cobalt nitrate to produce catalysts containing 20 wt.% cobalt. The metal crystallite size and degree of reduction was found to increase with increasing pore diameter of the support for supports with an average pore diameter larger or equal to 40 Å, and hence the dispersion decreased. In impregnated catalysts, the metal crystallites seems to appear in clusters on the support. With increasing average pore diameter, the size of these clusters increases. In the Fischer–Tropsch synthesis, the 100 Å supported catalyst proved to be the most active and selective catalyst for hydrocarbon formation. The C5+ and methane selectivity passed through a maximum and minimum at the 100 Å supported catalyst, respectively, which can be explained quantitatively using the reactant transport model proposed by Iglesia et al.  相似文献   

7.
The conversion of CO/H2, CO2/H2 and (CO+CO2)/H2 mixtures using cobalt catalysts under typical Fischer–Tropsch synthesis conditions has been carried out. The results show that in the presence of CO, CO2 hydrogenation is slow. For the cases of only CO or only CO2 hydrogenation, similar catalytic activities were obtained but the selectivities were very different. For CO hydrogenation, normal Fischer–Tropsch synthesis product distributions were observed with an of about 0.80; in contrast, the CO2 hydrogenation products contained about 70% or more of methane. Thus, CO2 and CO hydrogenation appears to follow different reaction pathways. The catalyst deactivates more rapidly for the conversion of CO than for CO2 even though the H2O/H2 ratio is at least two times larger for the conversion of CO2. Since the catalyst ages more slowly in the presence of the higher H2O/H2 conditions, it is concluded that water alone does not account for the deactivation and that there is a deactivation pathway that involves the assistance of CO.  相似文献   

8.
Square channel cordierite monoliths have been loaded with alumina washcoat layers of various thicknesses (20–110 μm) and loaded with rhenium and cobalt resulting in a 0.1 wt.% Re/17 wt.% Co/Al2O3 catalyst. These monolithic catalysts have been tested in the Fischer–Tropsch synthesis in a temperature window (180–225 °C) under synthesis gas compositions ranging from stoichiometrically excess carbon monoxide to excess hydrogen (H2/CO = 1–3). The results include data on the activity and selectivity of CoRe/Al2O3 monolithic catalysts for FTS under these process conditions. Washcoat layers thicker than about 50 μm appear to lead to internal diffusion limitations. Thinner washcoat layers yield, depending on the conditions, to larger amounts of -olefins than alkanes for chain lengths below 10 carbon atoms. ASF and non-ASF chain length distributions are obtained for thin washcoats, whereby the chain growth probability increases from 0.83 to 0.93. Under certain conditions the amounts of alkanes even increase with chain length. These experimental results with different diffusion lengths have been used to analyze the effects of secondary reactions on FTS selectivity.  相似文献   

9.
The effect of cobalt precursor, catalyst pretreatment and promotion with ruthenium and rhenium on the formation of cobalt metal nanoparticles and catalytic performance of supported Fischer–Tropsch (FT) catalysts was studied using a combination of techniques (DSC–TGA, UV–vis spectroscopy, XPS, XRD, EXAFS–XANES, in situ magnetization measurements, propene chemisorption and catalytic measurements). The cobalt promoted and unpromoted catalysts were prepared by aqueous co-impregnation using cobalt nitrate or acetate, ruthenium nitrosyl nitrate or perrhenic acid. In both unpromoted and Ru and Re-promoted cobalt catalysts after impregnation and drying, cobalt is present mainly in octahedrally coordinated complexes. The repartition of cobalt species between Co3O4 and cobalt silicate depends essentially on the exothermicity of precursor decomposition. Cobalt nitrate precursor, with an endothermic decomposition, favors Co3O4 crystallites. Lower temperature of cobalt nitrate decomposition and catalyst calcination generally leads to higher dispersion of supported cobalt oxide. Cobalt acetate precursor, with an exothermic decomposition, favors cobalt silicate. By optimizing the conditions of cobalt acetate decomposition, the fraction of cobalt silicate can be decreased favoring a more reducible Co3O4 phase. For the catalysts prepared from cobalt nitrate, promotion with ruthenium increases the cobalt dispersion, while maintaining high reducibility. For the catalyst prepared via low temperature decomposition of cobalt acetate, addition of ruthenium increases the fraction of Co3O4 crystalline phase and decreases the concentration of barely reducible cobalt silicate. The Fischer–Tropsch reaction rates over unpromoted and promoted cobalt catalysts were found to be primarily a function of the number of cobalt metal sites, which are generated by the reduction of Co3O4 crystallites.  相似文献   

10.
Fischer–Tropsch synthesis was carried out in slurry phase over uniformly dispersed Co–SiO2 catalysts prepared by the sol–gel method. When 0.01–1 wt.% of noble metals were added to the Co–SiO2 catalysts, a high and stable catalytic activity was obtained over 60 h of the reaction at 503 K and 1 MPa. The addition of noble metals increased the reducibility of surface Co on the catalysts, without changing the particle size of Co metal significantly. High dispersion of metallic Co species stabilized on SiO2 was responsible for stable activity. The uniform pore size of the catalysts was enlarged by varying the preparation conditions and by adding organic compounds such as N,N-dimethylformamide and formamide. Increased pore size resulted in decrease in CO conversion and selectivity for CO2, a byproduct, and an increase in the olefin/paraffin ratio of the products. By modifying the surface of wide pore silica with Co–SiO2 prepared by the sol–gel method, a bimodal pore structured catalyst was prepared. The bimodal catalyst showed high catalytic performance with reducing the amount of the expensive sol–gel Co–SiO2.  相似文献   

11.
Rate data have been obtained for CO hydrogenation on a well-characterized 11.7% Co/TiO2 catalyst in a differential fixed bed reactor at 20 atm, 180–240°C, and 5% conversion over a range of reactant partial pressures. The resulting kinetic parameters can be used to model precisely and accurately the kinetics of this reaction within this range of conditions. Turnover frequencies and rate constants determined from this study are in very good to excellent agreement with those obtained in previous studies of other cobalt catalysts, when the data are normalized to the same conditions of temperature and partial pressures of the reactants. Based on this comparison CO conversion and the partial pressure of product water apparently have little effect on specific rate per catalytic site. The data of this study are fitted fairly well by a simple power law expression of the form −rCO=kPH20.74PCO−0.24, where k=5.1×10−3 s−1 at 200°C, P=10 atm, and H2/CO=2/1; however, they are best fitted by a simple Langmuir–Hinshelwood (LH) rate form −rCO=aPH20.74PCO/(1+bPCO)2 similar to that proposed by Yates and Satterfield.  相似文献   

12.
Monolithic catalysts made of cordierite and γ-Al2O3 have been prepared and tested for the Fischer–Tropsch (FT) synthesis. When operated without oil circulation, washcoated cordierite monoliths have previously been shown to be as active and selective as the corresponding powder catalyst provided that the monoliths have low washcoat loadings. Two-phase operation, i.e. with oil/product circulation during reaction, resulted in improved heat removal and temperature control, in lower apparent activity and faster deactivation, but the C5+ selectivity was equal to or even better than without oil circulation. The lower apparent activities obtained with oil circulation seem to be a combination of catalyst deactivation and flow-related problems in the present experimental set-up.  相似文献   

13.
The pulse transient method has been used to study the kinetics of several key steps of Fischer–Tropsch (FT) synthesis over cobalt supported catalysts. These elementary steps involve chemisorption of hydrogen and propene, and chemisorption and hydrogenation of carbon monoxide. It is found that at the conditions of Fischer–Tropsch synthesis, hydrogen chemisorption is reversible and quasi-equilibrated, while carbon monoxide adsorption is generally irreversible. Chemisorption of propene on cobalt metal sites results in its rapid autohydrogenation to propane and simultaneous formation of CxHy surface species.

The transient response curves produced during hydrogenation of carbon monoxide pulses in a flow of hydrogen have been analyzed using the modified Kobayashi model, which involves irreversible chemisorption and dissociation of carbon monoxide, quasi-equilibrated adsorption of hydrogen and reversible adsorption of water. The kinetic analysis suggests that oxygen-containing species are probably the most abundant surface intermediates. Desorption of water from the catalysts seems to be much slower than hydrogenation of surface carbon species.  相似文献   


14.
Monolithic structures made of cordierite, γ-Al2O3 and steel have been prepared as catalysts and tested for Fischer–Tropsch activity. The monoliths made of cordierite and steel were washcoated with a 20 wt.% Co–1 wt.% Re/γ-Al2O3 Fischer–Tropsch catalyst whereas the γ-Al2O3 monoliths were made by direct impregnation with an aqueous solution of the Co and Re salts resulting in a loading of 12 wt.% Co and 0.5 wt.% Re. The activity and selectivity of the different monoliths were compared with the corresponding powder catalysts.

Higher washcoat loadings resulted in decreased C5+ selectivity and olefin/paraffin ratios due to increased transport limitations. The impregnated γ-Al2O3 monoliths also showed similar C5+ selectivities as powder catalysts of small particle size (38–53 μm). Lower activities were observed with the steel monoliths probably due to experimental problems.  相似文献   


15.
The effects of the addition of Ag, Au, or Rh to a 15 wt% Co/SiO2 catalyst on the Fischer–Tropsch (FT) synthesis were studied. Both Au and Rh showed a promoting effect on the FT activity, whereas the addition of Ag decreased the activity. The addition of a small amount of Rh (0.1–0.5 wt%) increased the CO conversion by 50% without affecting the selectivity. It was found that Rh catalyzed the reduction of cobalt oxides, but it did not change the number of surface cobalt atoms. It is proposed that the higher activity of Rh-promoted catalysts is due to the hydrogen spillover from Rh to Co during FT synthesis.  相似文献   

16.
Dragomir B. Bukur   《Catalysis Today》2005,106(1-4):275-281
Attrition properties of several oxide supports and precipitated iron-based F–T catalyst (100Fe/3Cu/4K/16SiO2 in parts by weight) were evaluated using ultrasound irradiation test and stirred tank slurry reactor (STSR) test under non-reactive conditions. Attrition by fracture and erosion of the iron-based catalyst was small in both types of tests and its overall attrition strength was better than that of the alumina and silica supports, which were evaluated under the same conditions. Also, attrition studies with four iron-based F–T catalysts were conducted under reaction conditions in the STSR. Catalyst of similar composition, as that used in non-reactive studies, prepared by spray drying technique had the highest attrition strength among all catalysts tested.  相似文献   

17.
N. J. Coville  J. Li 《Catalysis Today》2002,71(3-4):403-410
A series of Co/B/TiO2 (B=ammoniumborate, boric acid, o-carborane, 0.01–1.5 wt.% B) catalysts were synthesized. The addition of boron decreased the reducibility of the Co as determined from temperature-programmed reduction studies and H2 reduction/O2back titration studies. This in turn decreased the FT activity but not the turnover frequency of the Co catalyst.  相似文献   

18.
A highly stable and active Fe-Mn catalyst for slurry Fischer–Tropsch synthesis (FTS) was prepared and scaled up for the application in the industrial pilot plant at Institute of Coal Chemistry (ICC), Chinese Academy of Sciences (CAS). One Lab-scale catalyst and one scaled-up catalyst are introduced in the present paper. The particle size of the Lab-scale catalyst is about 5–15 μm, while it is increased to 30–90 μm for the scaled-up catalyst. Simultaneously, the morphology of the catalyst was greatly improved after the catalyst being scaled up. Both the Lab-scale and scale-up catalysts show high FTS activity. CO conversion of the Lab-scale catalyst and the scaled-up one are over 70.0% (H2/CO = 0.67, 275 °C, 1.5 MPa and 3000 h−1) and 55.0% (H2/CO = 0.67, 260 °C, 1.5 MPa and 2000 h−1), respectively. The catalysts also possess excellent stability, no obvious deactivation was observed during stable run of 4200 h and 1200 h on stream for the two catalysts. However, the Lab-scale catalyst produced more methane (about 8–10 wt%) and C2–4 (22–30 wt%) and less C5+ hydrocarbon (55–70 wt%). Meanwhile, the hydrocarbon distribution of the catalyst was greatly improved for after the catalyst being scaled up, and the distribution of hydrocarbon products become much preferable. The selectivity to methane was well controlled at about 5 wt%, and the sum of and was increased to 91–93 wt%. On the whole, the scaled-up catalyst satisfies the requirements of the application for FTS in the industrial pilot plant of slurry bubble column reactor (SBCR) at ICC, CAS.  相似文献   

19.
The following overview is divided roughly into three sections. The first section covers the period from the late 1920s when the first liquid phase synthesis was first conducted until about 1960 when the interest in Fischer–Tropsch synthesis (FTS) declined because of the renewed view of an abundance of petroleum at a low price. The second period includes the activity that resulted from the oil shortage due to the Arab embargo in 1972 and covers from about 1960 to 1985 when the period of gloomy projections for rapidly increasing prices for crude had faded away. The third section covers the period from when the interest in FTS was no longer driven by the projected supply and/or price of petroleum but by the desire to monetize stranded natural gas and/or terminate flaring the gas associated with petroleum production and other environmental concerns (1985 to date). These sections are followed by a brief overview of the current status of the scientific and engineering understanding of slurry bubble column reactors.  相似文献   

20.
The structure of cobalt species at different stages of the genesis of monometallic and Pt-promoted cobalt alumina-supported Fischer–Tropsch catalysts was studied using X-ray diffraction, UV–visible spectroscopy, in situ X-ray absorption, in situ magnetic method, X-ray photoelectron spectroscopy, and DSC–TGA thermal analysis. The catalysts were prepared by incipient wetness impregnation using solutions of cobalt nitrate and dihydrogen hexachloroplatinate. Both variation of catalyst calcination temperature between 473 and 773 K and promotion with 0.1 wt% of Pt had no significant affect on the size of supported Co3O4 crystallites. The size of cobalt oxide particles in the calcined catalysts seems to be influenced primarily by the pore diameter of the support. Cobalt reducibility was relatively low in monometallic cobalt alumina-supported catalysts and decreased as a function of catalyst calcination temperature. The effect was probably due to the formation of mixed surface compounds between Co3O4 and Al2O3 at higher calcination temperatures, which hinder cobalt reduction. Promotion with platinum spectacularly increased the rate of cobalt reduction; the promotion seemed to reduce the activation energy of the formation of cobalt metallic phases. Analysis of the magnetization data suggests that the presence of Pt led to the reduction of smaller cobalt oxide particles, which could not be reduced at the same conditions in the cobalt monometallic catalysts. Promotion of cobalt alumina-supported catalysts with small amounts of Pt resulted in a significant increase in Fischer–Tropsch cobalt time yield. The efficient control of cobalt reducibility through catalyst calcination and promotion seems to be one of the key issues in the design of efficient cobalt alumina-supported Fischer–Tropsch catalysts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号