首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
根据青海省共(和)玉(树)高速公路特殊结构路基的地温监测资料,对3种路基(XPS保温板路基,碎石路基和通风管路基)填土与地基土的地温变化情况及冻土人为上限变化与天然上限附近热流密度状况以及路基温度场的非对称性进行对比分析,研究3种路基的地温分布特征及降温效果。测试结果表明:(1)3种路基在左、右路肩的不同深度处均呈现出明显的升温趋势,观测期内,XPS板路基升温幅度最大;碎石路基次之,通风管路基最小;(2)路基修筑完成初期,3种路基的多年冻土人为上限均存在不同程度抬升;到第3年,3种路基下多年冻土人为上限均下降;(3)3种路基的冻土上限附近热量收支均呈吸热状态,吸热量大小顺序为XPS板路基碎石路基通风管路基;(4)3种路基内部温度均呈左高右低的不对称分布。综上研究结果,建议在今后高温冻土区的高速公路建设中优先采用通风管路基。同时,为减小地温不均匀分布造成的路基纵向裂缝等病害,路基的横断面应采取差异化设计的原则。  相似文献   

2.
 基于青海省共和—玉树(共玉)高速公路修筑初期的地温监测资料,对3种典型冻土路基措施,即保温路基、块石路基和通风管路基下部浅层(0~4 m)地温、深层(4 m以下)地温以及多年冻土人为上限变化情况进行对比分析,研究路基修筑初期下伏多年冻土的变化过程,并且对各种路基技术措施的效果进行比较。监测结果表明,对浅层地温,保温路基左右路肩处一定深度有降温,块石路基仅在右路肩有降温,通风管路基左右路基及中心孔均有较大范围的降温,3种措施均面临不同程度的阴阳坡热不对称问题,以保温路基最为显著;深层地温均有升高的趋势,相同深度下保温路基升温幅度最大,块石路基次之,通风管路基最小;多年冻土人为上限均有显著抬升,并有继续抬升的趋势。初步监测结果显示了保护多年冻土措施的3种路基结构均具有一定的效果,由于道路修筑时间较短,冻土路基的长期效果还需要进一步的监测分析。  相似文献   

3.
碎石护坡和片石护道都是积极主动保护多年冻土路基的工程措施。左(阳坡)、右(阴坡)路肩不同深度年平均地温呈现逐年降低的趋势,路基体中冷储量不断增加。同时,冻土上限呈现逐年抬升的趋势。两种工程措施各有利弊:与碎石护坡路基左路肩土体对比,片石护道路基左路肩上半部土体年平均地温略高,热稳定性偏低,冻土上限偏低;下半部土体年平均地温略低,冷储量偏多,热稳定性偏高。与碎石护坡路基右路肩对比,片石护道路基右路肩土体年平均地温偏低,热稳定性偏高。  相似文献   

4.
为了研究冻土路基的吸热特征,对青藏高原多年冻土区的黑色沥青路面公路工程进行了现场试验监测。利用监测的地温数据,基于热传导理论计算分析了冻土路基的热量收支特征,并通过数值模拟研究了路基高度与宽度对热量收支的影响。研究结果表明:(1)路基的填筑会造成地基热量收支幅度减小,净吸热量较同深度的天然地层明显增大;(2)路基在当年10~12月以及翌年1~2月放热,在当年3~9月吸热,总体而言在一个完整的冻结融化周期内(一年)路基的累计吸热量大于累计放热量,净吸热量约为42.6 MJ/m2·a,路基的净吸热量在冻土上限以上的地层及路基填土中耗散约50%,以下占50%;(3)在路基高度一定的情况下,随着路基宽度的增大,地基的净吸热量也逐渐增大,但增加的幅度逐渐减小;(4)在路基宽度一定的情况下,随着路基高度的增大,地基的净吸热量逐渐减小。  相似文献   

5.
通风路基主要影响因素及应对措施研究   总被引:1,自引:1,他引:1  
 结合实测资料,通过模拟计算从传热角度就通风路基降温效能的主要影响因素进行分析。研究发现,在管道通风路基中,管间土体存在较强的热流向下传热,通风管间距是影响降温效能的重要因素之一。在公路沥青路面条件下,由于路面的强烈吸热作用,通风路基的降温效能被极大削弱,环境升温和设计不当都可能造成工程措施的失效。针对这一问题,提出宽幅通风新型工程措施。模拟计算结果表明,该种新型路基具有高效、快速的降温效能。在沥青路面条件下,该种措施实施3 a后,-3 m深度的地温就已低于原天然地表下的温度,冻土人为上限在快速达到路堤底部约-0.5 m深度后,完全维持稳定。该种措施还成功解决路基地温场的非对称性难题,进一步增强路基的长期稳定。这些结果对我国多年冻土区高等级公路的建设和关键工程问题的解决具有重要意义。  相似文献   

6.
结合实测资料,通过模拟计算从传热角度就通风路基降温效能的主要影响因素进行分析。研究发现,在管道通风路基中,管间土体存在较强的热流向下传热,通风管间距是影响降温效能的重要因素之一。在公路沥青路面条件下,由于路面的强烈吸热作用,通风路基的降温效能被极大削弱,环境升温和设计不当都可能造成工程措施的失效。针对这一问题,提出宽幅通风新型工程措施。模拟计算结果表明,该种新型路基具有高效、快速的降温效能。在沥青路面条件下,该种措施实施3 a后,-3 m深度的地温就已低于原天然地表下的温度,冻土人为上限在快速达到路堤底部约-0.5 m深度后,完全维持稳定。该种措施还成功解决路基地温场的非对称性难题,进一步增强路基的长期稳定。这些结果对我国多年冻土区高等级公路的建设和关键工程问题的解决具有重要意义。  相似文献   

7.
柴达尔至木里铁路是青海省地方铁路,全线均有多年冻土分布,依据青藏铁路热棒应用的成功经验,其部分路段施行了热棒冷却措施。不同于青藏铁路沿线气候和冻土条件,柴木铁路热棒应用效果有待于检验。设置三个试验断面,分析了气温条件,比较研究了热棒和无热棒路基地温变化的不同,结果表明:(1)柴木铁路大风频繁、气温低、温差大的气候条件有利于热棒的应用;(2)无热棒断面路基地面深度3 m以下地温波动较小,长期稳定在-1 ℃附近;(3)在第二个冻融周期的冬季,热棒能够有效地降低路基温度;(4)热棒断面路基第二年的冬季降温效果非常显著,冻土上限最大抬升了1.5 m。热棒冷却措施能够保障柴木铁路多年冻土路基稳定,为铁路的正常运营提供保证。  相似文献   

8.
可调控通风管路基的降温效果   总被引:3,自引:1,他引:3  
可调控通风管路基是一种理想的保护高温冻土的工程措施。针对青藏铁路高温冻土段存在的冻融问题,考虑太阳辐射和附面层对边界条件的影响,通过对传统和可调控通风管路基进行详细的数值仿真分析,结果表明:可调控通风管路基在夏季(8月份)0℃的等温线比传统的通风管路基要高,说明其冻土上限抬升较高,冻土会得到更好保护,并且其路基下面也不会出现融化盘;冬季(3月份)-4℃的等温线传递深度要比传统通风管路基深,其对路基基层冻土的降温速度和冷却效果要明显优于传统的通风管路基。  相似文献   

9.
 为研究青藏铁路高温高含冰量斜坡润湿地段路基稳定性,在青藏铁路K1139+940处开展地温、变形监测,分析路基地温、变形特征,建立温度、水分与变形耦合方程,预测斜坡水分运移对路基温度和变形的影响。结果表明:(1) 斜坡路基阴阳坡效应明显,阳坡年平均温度比阴坡高2.5 ℃以上;(2) 路基运营初期,左路肩下冻土上限下降、地表升温,而右路肩下上限抬升、温度降低,温度场的横向非对称分布导致明显的路基横向变形差异;(3) 活动层水分渗流对路基阳坡下部温度和变形影响最明显,路基中心次之,阴坡最小,水分渗流加速了路基的升温和变形过程、加剧了路基温度场和变形的非对称分布;(4) 斜坡路基运行50 a后,斜坡路基下部含土冰层全部融化、路面最大横向变形差异达到18 cm。对于含水量较高的斜坡地段,水分渗流对温度场和变形的影响不可忽略。  相似文献   

10.
退化性多年冻土地区公路路基地温和变形规律   总被引:4,自引:1,他引:3  
 青藏高原多年冻土地区公路路基地温、变形监测资料表明,在工程活动和气候变暖双重作用下,路基下多年冻土普遍存在着上限下降和地温升高等特征退化,从而产生了以融沉为主的公路路基病害。基于青藏公路唐南段和青康公路K369段路基地温和变形的现场监测资料,总结退化性多年冻土地区路基的两类典型变形——横向不均匀变形和横向均匀变形规律,并分析路基地温、变形特征及其相互关系。结果表明,多年冻土地区路基的稳定性,最终取决于路基下伏冻土的地温变化和含冰量状况,其温度状况和路基路面的变形紧密相关。对于横向不均匀变形路基,多年冻土地区路基温度场的不对称性导致路基下多年冻土人为上限在路基下差异巨大,土层冻融状态的不对称最终引发路面变形在横向上的差异。退化性多年冻土区横向变形不均匀路基全年以沉降变形为主,且左、右沉降量差异较大,易于诱发纵向裂缝病害。对于横向变形均匀路基,退化性多年冻土地区公路路基变形以下沉变形为主,绝大部分路段没有明显的冻胀变形过程或冻胀变形很小,基本表现为年际的均匀沉降变形。横向变形均匀路基横向上变形比较均匀,年变形量相差不大,路基变形对路基稳定性和路面的影响较小。由于沿路基走向工程地质条件的差异,可能会形成局部沉降或波浪沉降变形病害。  相似文献   

11.
块石路堤上覆砂砾石厚度对冻土路基冷却效果的影响研究   总被引:5,自引:2,他引:5  
用数值模拟的方法得到不同上覆砂砾石厚度的块石路堤及普通路堤作用下铁路路基的温度场,通过对比分析显示:块石路堤相对于普通路堤能明显提高路基下多年冻土上限,降低多年冻土地温,有较强的主动制冷作用;块石上覆砂砾石厚度的增加,会减弱块石的制冷作用,降低路基多年冻土上限;当砂砾石大于某一厚度时,中部一定范围的块石几乎丧失主动制冷能力,多年冻土地温逐渐升高,这对路基稳定及冻土保护极为不利。考虑全球气候变暖趋势及高路堤带来的高荷载影响,建议块石路堤上覆砂砾石不要太厚,应寻求制冷与多年冻土上限抬升两者兼得的最优厚度。  相似文献   

12.
汪双杰  陈建兵 《岩土工程学报》2008,30(10):1544-1549
多年冻土路基温度场的公路空间效应包括路基尺度效应与路面结构效应。利用考虑冰水相变与水分迁移的热流传导等效参数模型,数值模拟公路路基不同高度、不同宽度、不同边坡坡度的尺度效应与公路沥青路面、水泥混凝土路面、砂砾路面的结构效应,分析高原多年冻土路基温度场的变化。结果表明,青藏高原多年冻土对公路空间效应反映敏感,路基尺度直接影响地基温度场的变化,路基高度、边坡坡度与地基吸热量呈负相关性,路基宽度与吸热量呈正相关性;在高原强太阳辐射环境下,沥青路面吸热对冻土地基温度场影响剧烈,沥青路面吸热量是砂砾路面的1.7倍左右。研究认为,与其它线状工程相比,公路宽幅路基、沥青路面热效应是多年冻土路基温度场改变的关键因素,未来青藏高原多年冻土区高速公路建设必须妥善处理因公路空间效应引起多年冻土地基升温融化而导致的工程稳定与安全运营问题。  相似文献   

13.
青藏高原多年冻土区冷却路基技术现场实效监测研究   总被引:4,自引:0,他引:4  
以青藏铁路现场实体工程为背景,选用块石路堤、块石护坡和通风管路堤主动冷却措施进行现场实体工群试验,通过对路基内温度场的监测,研究这些措施对保护冻土的作用及效果。分析结果表明,2个冻融周期后,块石护坡路基、通风管路基和块石路基均具有一定的调节降温作用,有利于下覆多年冻土的保护。但是冻土上限的抬升需要消耗下部土体的冷能来实现,说明冻上路基温度场还处于不稳定阶段。  相似文献   

14.
透壁通风管对青藏铁路路基的冷却效果试验初探   总被引:13,自引:2,他引:13  
路基通风作为一种积极主动保护冻土路基的冷却调控技术受到人们的广泛关注与重视,该方法能有效地抬升多年冻土上限,保护冻土路基的稳定性。目前的路基通风一般采用路基内预埋实体混凝土管或PVC管,管壁不能透风,主要通过管内空气流动和热传导方式达到冷却路基的目的。一种管壁开孔、可以透风的新型通风管——透壁通风管,既可以使低温的自然风通过管道运动降温;还因管壁透风,低温的冷空气可以透过管壁的大孔眼穿透到通风管周围的介质中,直接与其进行传导换热和对流换热,改变普通通风管单一的管壁传导换热模式,从而可更为有效地促使路基内热量的散失。为探索透壁通风管在青藏铁路路基中的实际作用效果而进行了青藏铁路透壁通风管路基初步试验。该试验路基短期监测资料的初步分析结果显示:透壁通风管对青藏铁路路基具有较好的冷却能力。可在一定程度上抬升冻土上限;透壁通风管路基经填土级配优化后效果更好,但其长期效果的显现还需经过若干个周期的长期监测和资料的进一步分析。  相似文献   

15.
基于青藏铁路北麓河试验段块石路基与普通路基3个完整冻融循环周期内的地温数据,对比分析了两种路基下原天然地面处与原冻土天然上限处的地温变化过程以及路基不同部位下部土体的地温年际间变化过程。试验结果表明:块石路基下降温趋势明显且低于普通路基,原天然地面处低0.4~0.9℃,原天然冻土上限处低0.3~0.6℃。块石路基下部土体降温范围与降温幅度均大于普通路基,块石路基右路肩下部土体降温范围大于普通路基3 m,块石路基中心下部土体降温范围大于普通路基2 m。块石路基下部土体通过块石层与外界气体发生热交换强度不一致,右路肩下部最强,路基中心下部次之,左路肩下部最弱。  相似文献   

16.
青藏铁路站场路基比一般铁路路基宽度大,为此,在清水河高温细粒土地段进行了专门的现场试验研究。通过采用不同深度处地温场变化、上限变化、阴阳坡温度变化以及积温等分析方法,对该试验段3个冻融循环过程中监测到的温度场分析,并与普通路基的温度场数据进行对比。通过分析可以看出,站场路基下人为上限的上升幅度比普通路堤要大,路基表面以下同样深度处的地温,站场路基下的地温要低于普通路堤下的地温,因此路堤宽度较大的站场路基对多年冻土的保温效果比普通宽度的路堤好。由变形观测数据看出,冻胀量较小,变形主要为沉降变形,路堤阳坡冻胀板的变形量要大于路堤阴坡相应位置的冻胀板变形量。阳坡上层冻胀板最大沉降量是0.241 m;下层冻胀板最大沉降量0.237 m,且随着时间推移,变形趋于稳定。  相似文献   

17.
以G214公路高原多年冻土区姜路岭隧道浅埋段热棒群防护工程为例,通过对隧道天然工况下和热棒群防护下的隧道围岩地温变化特征及冻融圈变化规律的研究,评价了利用热棒群对高原多年冻土区隧道浅埋段进行主动热防护的工程效果。研究表明:天然工况下隧道施工产生的冻融圈范围大于2.2 m;冻融圈回冻时间大于4 a;在热棒群防护下姜路岭隧道出口左洞洞侧人为冻土上限抬高0.5 m;隧道洞顶冻融圈的回冻时间为1 a,洞侧冻融圈回冻时间为2~3 a;地温总体上呈现出类似于正余弦曲线的变化形式,暖季地温较大,寒季地温相对较小,且随着时间推移,同期地温在逐渐降低;评价认为利用热棒群对多年冻土区隧道浅埋段进行主动热防护可以快速消除施工给隧道冻土围岩带来的热干扰,维持洞周冻土围岩的稳定,同时在洞周形成冻土防渗帷幕,阻隔冻结层上水向隧道结构方向的渗入,是一种有效保护隧道多年冻土环境的工程措施。  相似文献   

18.
以G214公路高原多年冻土区姜路岭隧道浅埋段热棒群防护工程为例,通过对隧道天然工况下和热棒群防护下的隧道围岩地温变化特征及冻融圈变化规律的研究,评价了利用热棒群对高原多年冻土区隧道浅埋段进行主动热防护的工程效果。研究表明:天然工况下隧道施工产生的冻融圈范围大于2.2 m;冻融圈回冻时间大于4 a;在热棒群防护下姜路岭隧道出口左洞洞侧人为冻土上限抬高0.5 m;隧道洞顶冻融圈的回冻时间为1 a,洞侧冻融圈回冻时间为2~3 a;地温总体上呈现出类似于正余弦曲线的变化形式,暖季地温较大,寒季地温相对较小,且随着时间推移,同期地温在逐渐降低;评价认为利用热棒群对多年冻土区隧道浅埋段进行主动热防护可以快速消除施工给隧道冻土围岩带来的热干扰,维持洞周冻土围岩的稳定,同时在洞周形成冻土防渗帷幕,阻隔冻结层上水向隧道结构方向的渗入,是一种有效保护隧道多年冻土环境的工程措施。  相似文献   

19.
利用ANSYS有限元软件,引入附面层原理,对高纬度多年冻土区沥青路面下路基温度场进行模拟。研究结果表明:运营30年,各深度处的年平均地温发生着具有一定规律的升高,且变化的幅度也随着深度的增加而衰减;路表下浅层温度场变化幅度最大,深层温度场变化幅度越来越小;随时间和气温的逐年增长,冻土人为上限逐年下移,将严重影响路基的热稳定性。  相似文献   

20.
为充分研究纵向通风路基对于多年冻土的工程效果,2003年在国道214线花石峡修建了纵向通风的实体试验工程.现场试验工程监测数据初步表明,相对于一般路基,A段(管长为10m)通风管下2m范围的土体,一年后地温整体上降低了1~1.5℃,B段(管长为15m)相应范围地温也降低了0.3~0.7℃,说明通风管的确起到了降低地温的良好作用,利用铺设在路基坡脚处的纵向通风管道加强退化行多年冻土区公路路基稳定性是可行的.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号