首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
采用Deform软件模拟TC4钛合金棒材以连续变断面循环挤压细化组织效果较好的一组参数:变形温度800℃,挤压速度2 mm/s,6道次循环变形时的应力场、应变场及温度场。结果表明,随着变形循环道次的增加,应变量随之增加,在圆柱坯料高度方向的中间区域等效应变分布较为均匀;对比同一变形循环的挤压工序与镦粗工序,挤压工序的等效应力稍大;此外,变形试样中心区域的温度较高且为大变形区,其原因是试样外表面与模具之间存在热交换而导致试样表面温度较低。但就整体而言,试样变形量分布还是相对均匀,这与其显微组织及显微硬度沿径向分布较均匀的试验结果一致。  相似文献   

2.
采用连续变断面循环挤压对TC4钛合金进行变形,研究变形工艺参数对TC4合金沿径向显微组织及显微硬度的影响。结果表明,随着变形温度升高,α相尺寸虽然变化较小但还是有一定程度的长大;变形速度对显微组织中初生α相的含量影响较小,但对其形态和晶粒尺寸的影响相对较大:低速变形时,初生α相呈长条状,而以较高速度变形时,初生α相晶粒呈等轴状,且晶粒有一定程度细化,这是由于在该变形条件下发生了完全动态再结晶;随着变形道次的增加,晶粒细化程度增加,当试样经6道次循环挤压后组织细化效果显著,由原始尺寸的10μm细化至4μm。变形温度及变形速度对试样沿径向的显微硬度分布影响较小,但循环道次却对其影响较显著,随着循环道次的增加,试样沿径向显微硬度值较高且同一试样上的差异较小、分布较均匀,这与组织得到显著细化及均匀化有关。  相似文献   

3.
通过对双通道等径角挤压变形过程的数值模拟,获得了不同路径4个道次各变形区的等效应变分布图,分析了挤压试样变形不均匀现象及其形成原因。结果表明,双通道等径角挤压中存在4种变形区,其中与冲头接触的区域应变值几乎保持挤压前的水平,该区域的存在是造成试样变形不均匀的主要原因。多道次挤压中试样的均匀性不仅与旋转方式有关,还与试样的放置方式有关。采用A路径的试样应变均匀性优于B路径;采用A路径进行挤压,在2道次挤压后试样左右剪切变形区等效应变呈现一端大一端小的分布状态,在3、4道次挤压中采取大+小剪切变形区处于冲头一侧的放置方式,试样等效应变的均值最高;采取小+大剪切变形区处于冲头一侧的放置方式,制备试样等效应变分布最为均匀。  相似文献   

4.
纯铝等径角挤扭新工艺变形   总被引:1,自引:0,他引:1  
等径角挤扭(ECAPT)是结合等径角挤压(ECAP)和挤扭(TE)两种典型的大塑性变形(SPD)工艺而产生的一种新型细晶材料制备技术。利用刚塑性有限元技术对纯铝1100ECAPT工艺变形特征进行模拟研究,获得了等效应变和等效应力的大小及分布规律,分析了挤压载荷随变形时间的变化规律及其对试样变形的影响。结果显示,在模具拐角和螺旋通道处,等效应变得到有效积累,最终呈层状分布,且相对较为均匀,应变分布均匀性也得到一定改善,等效应力在上述两处区域达到最大。采用纯铝进行室温3道次ECAPT实验,测量试样显微组织和力学性能的变化。结果表明,实验结果与模拟结果具有较好的一致性;晶粒得到了明显细化,屈服强度、抗拉强度与显微硬度等力学性能得到明显提高,但试样塑性略有降低。  相似文献   

5.
运用有限元模拟软件MSC.Marc对纯铜挤扭工艺进行研究,分析挤扭变形过程、应变分布以及挤压道次对应变分布的影响。结果显示,变形可分为变形开始、完全充满、逐步挤出3个阶段。1道次成形后试样中心应变量较小,边缘处相对较大;随着挤压道次的增加,试样中心、边缘应变量均显著增大。采用自行设计的挤扭模具,在室温下进行纯铜的多道次挤扭试验。试验结果表明,应变量较大的边缘处晶粒变形较为剧烈,硬度值也相对较高;挤压道次增加,应变量增大,晶粒变形剧烈,硬度值愈高。  相似文献   

6.
通过有限元和试验相结合的方法,探究等通道转角挤压试验中挤压道次对由挤压纳米晶纯铜切屑制备的纯铜棒料所受的等效应变、挤压载荷和平均等效应力的影响规律,研究在热压协同作用下挤压道次对纳米晶细化和纳米成形块体致密性的影响。结果表明:随着挤压道次的增加,试样的平均等效应变和等效应力逐渐增大,变形区的等效应变分布的均匀性降低,试样的硬度先增大后降低;随着挤压道次的增加,在低道次(<4道次)下挤压后试样的固化成形效果越好,在高道次(>4道次)下由于挤压试样受热和高压的作用,晶粒间难以融合固结,且材料出现的孔隙和裂痕增多,试样的变形抗力下降。  相似文献   

7.
模具外角对等通道转角挤压(ECAE)变形过程影响较大,文章利用有限元软件(MSC.Marc)模拟研究了模具外角对ECAE过程中等效应变、变形机理的影响。模拟结果表明,模具外角Ψ>0°~30°的范围内,等效应变的分布较为均匀;当模具外角Ψ>30°时,等效应变的分布越来越不均匀;当模具外角Ψ=0°~90°范围内逐渐增大时,试样的变形机理由单一剪切变形逐渐变为剪切变形与弯曲变形相结合的复合变形行为。为了验证模拟结果,对大尺寸纯铝进行了等通道转角挤压实验(模具内角Ф=90°,模具外角Ψ=30°),纯铝实验应变值的分布与大小和模拟应变值的分布与大小近似吻合。由光学显微组织可知,经ECAE挤压一次后,变形试样组织较为均匀,晶粒得到一定程度细化。  相似文献   

8.
以AZ31镁合金为研究对象,利用刚塑性有限元法,研究ECAP变形工艺条件对变形均匀性的影响。模拟得到的试样主要变形区的平均等效应变值与理论等效应变值吻合度高。结果表明:变形均匀性改善主要集中在前4道次,而后4道次变化不大;过高或低的坯料温度均不利于应变的均匀分布;适当的摩擦系数和较低的挤压速度能促进试样均匀变形。结合正交实验,得出控制变形均匀性的最优方案是:模具温度240℃,坯料温度270℃,摩擦系数0.3,挤压速度3mm.s-1。  相似文献   

9.
以AZ31镁合金为研究对象,利用刚塑性有限元法,研究ECAP变形工艺条件对变形均匀性的影响.模拟得到的试样主要变形区的平均等效应变值与理论等效应变值吻合度高.结果表明:变形均匀性改善主要集中在前4道次,而后4道次变化不大;过高或低的坯料温度均不利于应变的均匀分布;适当的摩擦系数和较低的挤压速度能促进试样均匀变形.结合正交实验,得出控制变形均匀性的最优方案是:模具温度240℃,坯料温度270℃,摩擦系数0.3,挤压速度3mm· s-1.  相似文献   

10.
等径角挤压被认为是制备块体超细晶材料最有前景的工艺方法之一.采用刚塑性有限元法分析了不同路线多道次等径角挤压后的等效应变分布.结果表明:一道次等径角挤压后坯料中间主要变形区下部坯料的等效应变较低.A路线多道次挤压后,变形更加不均匀,上下表面的等效应变差值增大;C路线挤压后等效应变分布呈上下表面小,中间较高的分布特征,且随挤压次数的增加,中心和上下表面的等效应变差异增大.B_c路线多次挤压后的等效应变分布较均匀,等效应变较高的区域应变相差较小且所占区域较大.模拟结果对于等径角挤压工艺的制定可起到指导作用.  相似文献   

11.
为了研究高压扭转工艺对ZK60镁合金组织及性能的影响,采用有限元法对ZK60镁合金试样高压扭转成形过程进行数值模拟,分析成形过程中等效应力、应变分布及变化趋势。通过压扭设备和专用模具对镁合金试样进行高压扭转实验,采用金相显微镜观察试样的显微组织,利用维氏硬度计测量试样的显微硬度。结果表明:高压扭转能有效细化晶粒,改善材料组织结构;在一定的压力下,随着压扭圈数增加,晶粒得到细化,整体显微硬度有较大的提高;高压扭转后试样的显微硬度沿试样径向呈V型分布,与有限元模拟中试样径向的等效应变分布趋势一致。试样不同区域的等效应力、应变和显微硬度差异较大,边缘处的等效应力、应变最大,显微维氏硬度值最高。  相似文献   

12.
《塑性工程学报》2016,(3):10-16
利用数值模拟和实验研究方法分析圆形纯铜挤压件多道次等通道转角挤压(ECAP)工艺,发现多道次挤压获得的挤压件形变充分,形变分布较为均匀。通过分析挤压件截面的等效应变值与分布,发现模具的内角对挤压后材料等效应变值的影响较大,当内角为90°时,材料单次挤压的等效应变值达1.40,是内角为135°时的2.3倍,但材料的均匀性相对较差;挤压路径和通道形状对挤压后材料的形变均匀性至关重要,Bc路径和圆形通道效果最佳,不易形成应力集中等现象;挤压次数增加,材料的累积应变值和均匀性显著提高。实验中,挤压后棒材的横截面与表面的显微硬度值分别由原始的99HV上升至145HV和148HV,变化趋势与有限元模拟结果吻合。  相似文献   

13.
采用连续变断面循环挤压对TC11合金进行变形,研究了变形温度、变形速度、变形道次对其沿径向显微组织及硬度分布的影响。结果表明:在再结晶温度附近变形时,α相尺寸减小并呈等轴状,晶粒细化显著;而在较高温度变形时,晶粒细化效果变差。同时,变形速度对α相形貌影响较大,速度较低时,初生α相呈长条状,而当速度较高时,初生α相呈等轴状,且分布均匀。变形温度和变形速度对TC11合金沿径向的显微硬度分布有一定影响,试样经不同工艺参数变形后,同一试样沿径向的显微硬度值差异较小且分布较均匀,这与晶粒细化程度较好有关。采用连续变断面循环挤压制备TC11细晶材料时的较佳工艺参数为:850℃,5 mm/s,6道次,α相晶粒尺寸为4~4.5μm,且分布均匀。  相似文献   

14.
采用DEFORM-3D软件对纯钼粉末多孔烧结材料等径角挤压过程进行单道次三维有限元模拟和实验研究,获得变形过程中试样的应力、应变、致密行为等相关场量变化规律.模拟结果表明:等径角挤压工艺对粉末材料具有强烈的致密效果,整个变形过程可分为3个阶段,即初始变形、过渡变形及稳定变形;试样纵横截面上,等效应变均存在不均匀分布现象,靠近模具内角和上表面处试样所获应变较大,相对密度也较高.试样不同部位所处应力状态及应变速率分布状态的不一致是导致其应变分布不均匀的根本原因.单道次挤压实验结果与模拟结果具有较好的一致性,证明了所建立有限元模型的可靠性.  相似文献   

15.
限制模压变形均匀性研究与定量表征   总被引:1,自引:0,他引:1  
采用限制模压法(Constrained Groove Pressing,CGP)变形商业5052铝合金,考察了经不同道次变形后试样的显微硬度均匀性,即CGP的变形均匀性,并讨论了模具齿宽对变形均匀性的影响。结果表明,CGP变形能够显著提高5052铝合金的显微硬度值,但模具齿宽对显微硬度的提高影响不大;CGP变形1道次后,试样显微硬度分布极不均匀,但是随变形道次的增加,试样显微硬度分布趋于均匀;弯曲延展区的存在是导致CGP变形不均匀的根本原因,这种不均匀性可通过增加变形道次或增加模具齿宽加以改善。  相似文献   

16.
采用热力耦合方法对Ti-6Al-4V合金进行了多道次热轧模拟,研究了不同道次温度和等效塑性应变的分布特点。模拟结果表明,轧制过程表面温度低于心部的温度,随轧制道次的增加,表面温度整体表现为降低过程,中心温度整体表现为先升高后降低过程。中心位置比表面位置的等效塑性应变大,表面位置与中心位置的等效塑性应变均随变形道次的增加而增大。结果表明,随着轧制道次的增加,中心显微组织变形大于表面。中心区域组织易于发生动态球化。  相似文献   

17.
采用有限元模拟和物理模拟相结合的方法对高硅铝合金的往复挤压变形过程进行研究,并对其变形后的显微组织和性能进行分析。结果表明,变形后坯料外侧区域的应变量高于中间区域;随着挤压道次的增加,坯料的平均等效应变稳步提升。往复挤压使坯料的晶粒及硅颗粒明显的均匀细化,且在变形后坯料的外侧区域更为显著。坯料的强度及塑性在往复挤压后都有较大的提升,初始坯料的抗拉强度为140 MPa,伸长率为2.4%,经3道次往复挤压后,高硅铝合金的抗拉强度最高提升了142%,达到了199 MPa,伸长率最高提升了296%,达到了7.1%。  相似文献   

18.
利用Deform-3D有限元软件对铜铝双金属复合棒材室温4道次BC路径ECAE变形过程进行模拟,研究了金属流动、挤压载荷、等效应变以及平均应力的分布及变化规律;并在自行设计的模具上进行了试验验证,成功制备出铜铝双金属复合棒材,对变形材料进行了物理网格试验及组织性能测试。结果表明,ECAE工艺下铜铝双金属复合棒材内部存在剧烈剪切变形区,复合坯料由不稳定变形逐渐过渡为均匀协调变形,材料内部处于理想的三向压应力状态,静水压力较高,界面处金属结合紧密。4道次ECAE挤压后,铜铝双金属复合坯料整体变形相对均匀,平均累积等效应变量为4.49。随着挤压道次的增加,载荷峰值不断增加,同时复合坯料内部显微硬度不断升高,但包覆层增幅大于芯部材料。  相似文献   

19.
《铸造技术》2017,(7):1666-1669
采用Deform-3D有限元软件,在挤压温度为250~400℃条件下,对AZ31镁合金等径角挤压工艺进行了数值模拟,主要分析塑形成型过程中的挤压载荷、等效应力和等效应变的变化规律。结果表明,AZ31镁合金塑形成型过程中挤压载荷分为3个阶段:无明显变形阶段、快速增长阶段和稳定变形阶段。挤压载荷随着挤压温度的增加显著下降,试样的等效应力分布不均,模具转角处等效应力较大,存在应力集中现象,等效应变逐渐增加,在转角剪切区最大。试样经过ECAP变形后,心部等效应变大,从内向外应变呈减小的趋势,试样上部等效应变较大,下部等效应变相对较小,组织均匀性较好。  相似文献   

20.
通过循环扩挤(CEEOP)变形方法对100mm×50mm×170mm的 AZ80镁合金块状材料进行挤压加工,借助计算机模拟仿真、组织观察、拉伸试验、硬度测试等手段研究了1~4道次CEEOP变形对AZ80镁合金等效应变、显微组织和力学性能的影响。结果表明:随着CEEOP挤压道次的增加,晶粒的尺寸越来越小且分布均匀,1道次后晶粒尺寸可以从200μm左右细化到6μm,4道次后晶粒尺寸细化到1.5μm左右,整体分布均匀呈等轴晶晶粒,晶粒细化的机制是晶粒的机械破碎和动态再结晶,2道次以后晶粒细化效果不太明显。力学性能较均匀化退火态有了大幅度的提升,1道次硬度从均匀化退火态的61.5HB提升到了83.07HB,4道次达到86.27HB,抗拉强度与屈服强度分别从均匀化退火态的230.9MPa和115MPa提升到了262.7MPa和155MPa,四道次可以达到294MPa和170MPa,通过对比ECAP变形试样的组织与力学性能数据,在相同的变形温度与累积应变下,CEEOP变形方法比ECAP变形能够更好地细化晶粒和提高材料的抗拉强度和屈服强度。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号