首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 123 毫秒
1.
刘益军 《聚氨酯》2006,(7):78-80
简单综述了复合薄膜用聚氨酯胶粘剂的特性、品种及发展方向,对用于复合薄膜生产的高固含量溶剂型双组分聚氨酯胶粘剂、无溶剂聚氨酯胶粘剂、醇溶型溶剂型双组分聚氨酯胶粘剂、水性聚氨酯胶粘剂、耐蒸煮型聚氨酯胶粘剂及功能性聚氨酯胶粘剂的发展情况进行了介绍。  相似文献   

2.
水性聚氨酯胶粘剂的制备和应用   总被引:2,自引:0,他引:2  
本文详细介绍了备水性聚氨酯和水性聚氨酯胶粘剂的各种制备用原料和添加剂 ,以及其制备工艺 ,同时简述了水性聚氨酯胶粘剂在复合层压、贴塑加工、木材加工、植绒加工和压敏胶等方面的应用。指出水性聚氨酯胶粘剂性能接近溶剂型双组分聚氨酯体系 ,具有良好的发展前景  相似文献   

3.
评述了溶剂型、水基型、热熔型、无溶剂型聚氨酯胶粘剂的性能特点和它们在复合薄膜中的应用.介绍了复合薄膜生产的干法复合工艺.初步探讨了复合薄膜用聚氨酯胶粘剂今后的发展趋向,并提出了一些设想和建议.  相似文献   

4.
刘益军 《聚氨酯》2007,(12):84-87
复合薄膜用交联型水性聚氨酯胶粘剂的研制[作者]项尚林,李莹,韩徐(南京工业大学材料科学与工程学院)[刊名]中国胶粘剂.-2006,15(1),-30-32  相似文献   

5.
采用丙酮法制备了复合薄膜用的水性聚氨酯(WPU)乳液胶粘剂,研究了催化剂用量对WPU反应速率及其性能的影响。研究结果表明,适量的催化剂能明显加快聚氨酯(PU)预聚体的反应速率;当催化剂质量分数为0.1%时,WPU乳液的粘度和复合薄膜的T型剥离强度最大,但WPU胶膜的玻璃化转变温度(Tg)降低,由未加催化剂时的-25.5℃降低到-29.1℃。  相似文献   

6.
双组分水性聚氨酯胶粘剂的合成与应用   总被引:9,自引:0,他引:9  
以聚醚多元醇、甲苯二异氰酸酯、二羟甲基丙酸及三乙胺等基本原料制得水性聚氨酯,以聚醚多元醇、甲苯二异氰酸酯和异佛尔酮二异氰酸酯等为原料合成了可水分散异氰酸酯交联剂,对合成过程的某些影响因素进行了讨论。还介绍了这种双组分水性聚氨酯胶粘剂在复合薄膜等领域应用试验情况,该水性胶粘剂具有良好的贮存稳定性,较长的适用期和良好的粘接性能。  相似文献   

7.
叶青萱 《粘接》2009,30(11):64-67
聚氨酯胶粘剂的独特性能,使其可广泛应用于工业和日常生活的各个领域,成为国民经济中不可或缺的优异胶粘剂品类之一。该胶在我国发展迅速,尤其在包装薄膜复合、鞋靴制作、农作物秸秆有效利用、汽车轻量化节能、建筑物保温以及新能源利用等领域,起到至今尚无法被替代的作用。聚氨酯胶粘剂的水性化是近期研发、工业化、商品化的重点。  相似文献   

8.
耐蒸煮聚氨酯胶粘剂   总被引:1,自引:0,他引:1  
叶青萱 《热固性树脂》2003,18(1):X021-X023
重点阐述耐蒸煮食品复合薄膜包装袋的功能及其发展前景,进而讨论制备蒸煮袋所用相应聚氨酯胶粘剂应具备的特性、组成以及达到卫生标准的措施,最后提出今后的发展方向。  相似文献   

9.
杜郢  代飞  沈千红 《粘接》2007,28(5):32-35
简述了水性聚氨酯胶粘剂的定义,及其在植绒、多种层压制品、复合包装、木材粘接、鞋用以及压敏胶等方面的应用。介绍了水性聚氨酯胶粘剂的研究现状及多种改性方法的技术特点,如:丙烯酸酯改性、环氧改性、聚硅氧烷改性、纳米材料复合改性等。指出了水性聚氨酯胶粘剂的发展方向。  相似文献   

10.
《化工中间体》2011,(7):1-6
本文概述了水性聚氨酯胶粘剂的国内外研究现状,介绍了水性聚氨酯胶粘剂的制备方法,综述了水性聚氨酯改性研究进展,并展望了水性聚氨酯胶粘剂的发展方向.  相似文献   

11.
多重改性水性聚氨酯胶粘剂对聚烯烃薄膜的粘接机理   总被引:1,自引:0,他引:1  
以自制的多重改性水性聚氨酯(WPU)复合乳液为基料,配合适量的消泡剂、润湿剂和偶联剂等,制备出软包装覆膜用多重改性WPU胶粘剂。考察了消泡剂、润湿剂和偶联剂用量对胶粘剂性能的影响,分析了胶粘剂对聚烯烃薄膜的粘接机理。结果表明:该胶粘剂对经过电晕处理的聚烯烃薄膜表面润湿性好、润湿速率快,并且和基材表面存在着广泛的氢键,因此其与聚烯烃薄膜表面有较强的吸附作用;通过外加偶联剂己二酰肼(ADH),强化了胶粘剂对聚烯烃表面的粘接效果;当w(消泡剂)=0.3%、w(润湿剂)=0.5%和w(ADH)=0.5%时,BOPP(双向拉伸聚丙烯)膜和CPP(流延聚丙烯)膜之间的最终粘接强度为264 N/m,可以满足软包装覆膜用胶粘剂的使用要求。  相似文献   

12.
醇溶性聚氨酯(APU)胶粘剂是一种新型、环保的胶粘剂,它既克服了溶剂型聚氨酯(PU)胶粘剂毒性大的缺点,又克服了水性PU水挥发慢、影响生产效率和能耗大的缺点,是目前综合性能优良的新品种胶粘剂。采用聚醚二醇、甲苯二异氰酸酯、二羟甲基丙酸和三羟甲基丙烷为基本原料,用丙酮为溶剂合成了聚醚型阴离子APU胶粘剂。讨论了预聚反应-NCO/-OH的配比、交联体系、硅烷偶联剂KH-550的加料方式和扩链反应温度等因素对APU胶粘剂性能的影响。当初聚n(-NCO)/n(-OH)比值为6,扩链剂反应温度控制在(60±2)℃时,合成的聚醚型阴离子APU具有较好的力学性能和耐水性,而且贮存稳定性较好。  相似文献   

13.
本文研究了聚丙烯复合膜用的EVA乳液和丁基橡胶组成的胶粘剂的配方及工艺。实验结果表明:本研究的胶粘剂的粘结力达到甚至超过聚丙烯薄膜的扯断强度。  相似文献   

14.
通过对PC与PP透明胶粘剂配方与工艺的研究,了胶粘剂涂布量、固化温度和时间、增粘剂的种类和用量对复合膜的剥离强度的影响。  相似文献   

15.
采用聚酯二元醇、甲苯二异氰酸酯(TDI)、二羟甲基丙酸(DMPA)等为原料制备了水性聚氨酯,讨论了水性聚氨酯乳液的固含量及亲水性脂肪族聚异氰酸酯交联剂对水性聚氨酯性能的影响。结果表明:随着水性聚氨酯乳液固含量的提高,乳液的黏度明显提高,复合薄膜T型剥离强度增大;随着交联剂用量的增加,水性聚氨酯胶膜的吸水性明显下降;当水性聚氨酯/交联剂配比为10/1.0,熟化时间为16h时,T型剥离强度值达到最大值。  相似文献   

16.
A new process, the Non Anchor Coating Extrusion Laminating Process for producing an extrusion laminated film without any chemical primer, was investigated. Good adhesive properties were obtained by combining an ozone treatment of a molten polyethylene (LDPE) web and an activation treatment of the polyamide (ONy) substrate film. The adhesion mechanism induced by the new process was studied by FT-IR, ESCA and extraction of unreacted polyamide from the laminated samples. The peel strength between the ONy and LDPE laminated films produced with this process was greater than that for laminated film made with a conventional lamination process using anchor coating agents. A model of the adhesive mechanism is proposed. Hydrogen and covalent bonds through oxygenated functional groups are responsible for the enhanced adhesion.  相似文献   

17.
《合成纤维》2016,(4):39-42
介绍了层压纺织品在汽车工业中的应用,论述了汽车用层压纺织品的三种层压工艺——焰熔层压工艺、热熔层压工艺、水基黏合剂工艺的加工方法及其影响因素。为了提高汽车用层压纺织品的产品质量,汽车用面料生产厂家需要选择合适的生产工艺。  相似文献   

18.
Nonpolluting systems based on anionic polyurethane aqueous dispersions were obtained. The prepolymer based on hydroxyl‐terminated polybutadiene (HTPB), isophorone diisocyanate (IPDI), poly(propylene glycol) (PPG), and dimethylolpropionic acid (DMPA) were synthesized in bulk. After neutralization with triethylamine (TEA), the anionomer prepolymer was dispersed in water, followed by a chain‐extension reaction with ethylenediamine (EDA). The prepolymers were characterized by Fourier transform infrared spectrometry (FTIR) and the average particle size of the aqueous dispersions was determined by laser light scattering (LLS). The mechanical behavior of polyurethane‐cast films and the adhesive properties of the aqueous dispersions as coatings for wood were evaluated. It was observed that an increase in the HTPB content provoked an increase in the viscosity and in the particle size of the dispersions. The tensile strength and the modulus values of the films and the adhesiveness of the coatings in wood were also increased by increasing the HTPB content. On the other hand, the elongation of the polyurethane‐cast films and the tackness of the surface coatings decreased as the HTPB was increased. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 80: 566–572, 2001  相似文献   

19.
Scratch‐induced puncture damages on adhesive and extrusion laminated multilayer food packaging films were investigated. Films were tested using a modified standardized linearly increasing load scratch test methodology, ASTM D7027‐05/ISO 19252:2008, which has successfully demonstrated an ability to correlate damages observed in field use of packaging films to laboratory findings. Samples were cross‐sectioned to view the evolution of damage in a layer‐by‐layer fashion to determine any potential weak‐link in the laminate. It was observed that the extrusion laminated film showed both superior scratch performance and superior layer adhesion with increasing scratch load, particularly upon severe film deformation. The extrusion lamination process may be used to produce strong, scratch‐resistant packaging films without the need for additional adhesive layers and the associated health and environmental concerns. Usefulness of the standardized scratch testing for evaluating performance of food packaging films and laminates is discussed. POLYM. ENG. SCI., 54:71–77, 2014. © 2013 Society of Plastics Engineers  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号