首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
It is estimated that the combustion of biofuel generates 20% of all carbonaceous aerosols, yet these particles are studied less than those of other common sources. We designed and built a portable battery-operated emission-sampling cart to measure the real-time optical properties and other emission characteristics of biofuel cookstoves. In a field study in Honduras, we measured emission factors averaging 8.5 g/kg, higher than those found in previous laboratory studies. Strong flaming events emitted very dark particles with the optical properties of black particles. The elemental carbon to total carbon ratios ranged from 0.07 to 0.64, confirming that high elemental carbon fractions can be emitted from biofuel combustion and may not be used to distinguish fossil-fuel from biofuel sources when cooking is the dominant usage. Absorption Angstrom exponents, representing the dependence of absorption on wavelength, ranged from 1 (black) to 5 (yellow). Strongly absorbing particles with absorption inversely dependent on wavelength were emitted separately from particles with weak absorption and strong wavelength dependence; the latter probably contained conjugated aromatic compounds. Because combustion occurs in distinct phases, different types of carbonaceous aerosols from biofuel combustion are externally mixed at emission and may have different atmospheric fates.  相似文献   

2.
In this work, the elemental composition of fine and ultrafine particles emitted by ten different laser printing devices (LPD) is examined. The particle number concentration time series was measured as well as the particle size distributions. In parallel, emitted particles were size-selectively sampled with a cascade impactor and subsequently analyzed by the means of XRF. In order to identify potential sources for the aerosol's elemental composition, materials involved in the printing process such as toner, paper, and structural components of the printer were also analyzed. While the majority of particle emissions from laser printers are known to consist of recondensated semi volatile organic compounds, elemental analysis identifies Si, S, Cl, Ca, Ti, Cr, and Fe as well as traces of Ni and Zn in different size fractions of the aerosols. These elements can mainly be assigned to contributions from toner and paper. The detection of elements that are likely to be present in inorganic compounds is in good agreement with the measurement of nonvolatile particles. Quantitative measurements of solid particles at 400 °C resulted in residues of 1.6 × 10(9) and 1.5 × 10(10) particles per print job, representing fractions of 0.2% and 1.9% of the total number of emitted particles at room temperature. In combination with the XRF results it is concluded that solid inorganic particles contribute to LPD emissions in measurable quantities. Furthermore, for the first time Br was detected in significant concentrations in the aerosol emitted from two LPD. The analysis of several possible sources identified the plastic housings of the fuser units as main sources due to substantial Br concentrations related to brominated flame retardants.  相似文献   

3.
The elemental distribution and compositional homogeneity in auto exhaust particulates emitted from methylcyclopentadienyl manganese tricarbonyl-(MMT-)added gasoline engines have been investigated using a newly installed synchrotron X-ray microprobe. Two representative groups of exhaust particulate matter, as defined in a recent bulk X-ray absorption fine structure (XAFS) spectroscopic study at the Mn K-edge, were studied. The micro-X-ray absorption near-edge structure (XANES) spectra indicate a relatively homogeneous distribution of phases within a given particulate sample, down to a spatial extent of 40 microm (the resolution of microprobe). The micro-XANES also enabled analysis of several areas which displayed compositions different from the bulk sample, supporting the general theory describing manganese species formation in the exhaust. The ability to evaluate small regions also enabled direct verification of manganese sulfate from the S XANES despite the vast excess of sulfur present in other forms. The presence of a chloride compound, introduced through the sample dilution air and engine intake air, was also revealed. The study demonstrates the value of the combined X-ray microfluorescence with excitation by polychromatic radiation for elemental mapping and micro-XANES spectroscopy for chemical speciation in the study of dilute environmental materials containing low-Z constituents such as Cl, S, and P.  相似文献   

4.
Platinum, palladium, and rhodium are emitted from vehicle catalytic converters. Until now, the form of precious metal particles in road dust and urban waste has not been identified. This study has located, imaged, and analyzed these particles in road dust and gully waste. Two fragments of catalytic converter have been observed in road dust. They are 40-80 μm in size and covered in many minute particles (<0.3 μm) of either platinum with minor rhodium or palladium. One fragment identified in gully sediment is smaller, 25 μm in diameter, hosting only one attached particle of palladium with minor rhodium. As fragments are washed off roads they begin to disintegrate and the precious metals become detached. Also precious metal-bearing particles have been located in incinerated sewage ash including a 20 μm diameter cluster of <3 μm sized platinum particles that may be the remains of a catalytic converter fragment that has survived incineration. The form of these precious metal-bearing particles described here reveals that as they are dispersed from roads they are likely to be present predominantly as two particle sizes. Either they are attached to larger fragments of catalytic converter or they are released as individual detached tiny <0.3 μm to nanoparticle sizes.  相似文献   

5.
Volatile properties of particle emissions from four compressed natural gas (CNG) and four diesel buses were investigated under steady-state and transient driving modes on a chassis dynamometer. The exhaust was diluted utilizing a full-flow continuous volume sampling system and passed through a thermodenuder at controlled temperature. Particle number concentration and size distribution were measured with a condensation particle counter and a scanning mobility particle sizer, respectively. We show that while almost all the particles emitted by the CNG buses were in the nanoparticle size range, at least 85% and 98% were removed at 100 and 250 °C, respectively. Closer analysis of the volatility of particles emitted during transient cycles showed that volatilization began at around 40 °C, with the majority occurring by 80 °C. Particles produced during hard acceleration from rest exhibited lower volatility than those produced during other times of the cycle. On the basis of our results and the observation of ash deposits on the walls of the tailpipes, we suggest that these nonvolatile particles were composed mostly of ash from lubricating oil. Heating the diesel bus emissions to 100 °C removed ultrafine particle numbers by 69-82% when a nucleation mode was present and just 18% when it was not.  相似文献   

6.
A spark ignition engine is used to determine the influence of fuel composition and air/fuel equivalence ratio on the exhaust emissions of regulated pollutants. Two specific fuel matrices are used: the first contains eight hydrocarbons and the second contains four oxygenated compounds. A specific experimental design is used for these tests. Fuel aromatics increase the exhaust CO, HC, and NOx at stoichiometry, lean and rich conditions. Lambda is more important than fuel composition in the case of CO and HC. At stoichiometry, the addition of oxygenated compounds can decrease exhaust CO, HC, and NOx up to 30%, 50%, and 60%, respectively. Under these conditions, the addition of 5% of 2-propanol is the most effective for the reduction of CO, the addition of 20% of ethanol forthe reduction of HC, and this of 5% of methyl tributyl ester (MTBE) for the NOx. The addition of oxygenated compounds can decrease CO by 30% at lean conditions, while no decrease is observed at rich ones; HC and NOx can decrease up to 30% and 80%, respectively, under lean conditions and 50% under rich ones. At all lambda tested, exhaust NOx increases with the addition of 20% of 2-propanol.  相似文献   

7.
A spark ignition engine was used to study the impact of fuel composition and of the air/fuel equivalence (lambda) ratio on exhaust emissions of alcohols and aldehydes/ketones. Fuel blends contained eight hydrocarbons (n-hexane, 1-hexene, cyclohexane, n-octane, isooctane, toluene, o-xylene, and ethylbenzene (ETB)) and four oxygenated compounds (methanol, ethanol, 2-propanol, and methyl tert butyl ether (MTBE)). Exhaust methanol is principally produced from fuel methanol and MTBE but also from ethanol, 2-propanol, isooctane, and hexane. Exhaust ethanol and 2-propanol are produced only from the respective fuel compounds. Exhaust formaldehyde is mainly produced from fuel methanol, acetaldehyde from fuel ethanol, and propionaldehyde from straight-chain hydrocarbons. Exhaust acroleine comes from fuel 1-hexene, acetone from 2-propanol, n-hexane, n-octane, isooctane, and MTBE. Exhaust crotonaldehyde comes from fuel 1-hexene, cyclohexane, n-hexane, and n-octane, methacroleine from fuel isooctane, and benzaldehyde from fuel aromatics. Light pollutants (C1-C2) are most likely formed from intermediate species which are quite independent of the fuel composition. An increase in A increases the exhaust concentration of acroleine, crotonaldehyde, methacroleine, and decreases these of the three alcohols for the alcohol-blended fuels. The concentration of methanol, formaldehyde, propionaldehyde, and benzaldehyde is a maximum atstoichiometry. The exhaust concentration of acetaldehyde and acetone presents a complex behavior: it increases in some cases, decreases in others, or presents a maximum at stoichiometry. The concentration of four aldehydes (formaldehyde, acetaldehyde, propionaldehyde, and benzaldehyde) is also linked with the exhaust temperature and fuel H/C ratio.  相似文献   

8.
We evaluated, in vitro, the inflammatory and cytotoxic potential of soot particles from current low-emission (Euro IV) diesel engines toward human peripheral blood monocyte-derived macrophage cells. The result is surprising. At the same mass concentration, soot particles produced under low-emission conditions exhibit a much highertoxic and inflammatory potential than particles from an old diesel engine operating under black smoke conditions. This effect is assigned to the defective surface structure of Euro IV diesel soot, rendering it highly active. Our findings indicate that the reduction of soot emission in terms of mass does not automatically lead to a reduction of the toxic effects toward humans when the structure and functionality of the soot is changed, and thereby the biological accessibility and inflammatory potential of soot is increased.  相似文献   

9.
Small angle static light scattering was used to study the effect of milk dilution in permeate on the mechanism of acid-induced aggregation of casein particles. Growth kinetics of casein aggregates during acidification was characterized by the succession of four populations of particles. The first one corresponded to casein particles ranging from 0.1 to 1 microm, with a mean value of 0.3 microm. The second population, from 1 to 10 microm, was quickly replaced by a third population, from 10 to 100 microm, which gave rise to the last population measurable, from 100 to 1000 microm. The angular dependence of static light scattering from about 0.01 to 50 degrees was used to determine the fractal dimension (D) of pH-induced casein aggregates. With the formation of about 10-microm aggregates, fractal structures appeared. The D values, determined from double logarithmic plots of intensity versus scatteringvector resulted in values between 1.85 and 2.03.  相似文献   

10.
Structural and functional properties of starches from field peas   总被引:2,自引:0,他引:2  
Starch was isolated from seven varieties of field peas (Pisumsativum L.) and characterised using a combination of physical, chemical and functional tests. The total starch content of the peas ranged between 34% and 42.7% of dry matter, and the amylose content of the starch was between 35% and 38%. Average particle diameter of the seven starches varied between 21.4 and 26.1 μm. All of the pea starches gave a typical C-type X-ray diffraction pattern, with relative crystallinity ranging between 36% and 55% and the proportion of B-type crystallites between 3.8% and 30.4%. Although there were only small differences between the starches in amylose content, they displayed significant variability in functional properties, including swelling power, pasting characteristics, thermal transition temperatures in the differential scanning calorimeter, and in susceptibility to invitro attack by α-amylase. The results indicate the importance of structural characteristics of starch molecules, particularly amylopectin, as determinants of the properties of native starch granules.  相似文献   

11.
Physico-mechanical properties of particleboard fabricated from heat-treated rubberwood particles were investigated. Reduction in water absorption and mass loss were observed in heat-treated rubberwood particles, and it was associated with the properties of particleboard. The density and moisture content of the particleboard decreased with increasing treatment temperature and time. Heat treatment of particles improved the dimensional stability of the particleboard, but the mechanical properties were adversely affected.  相似文献   

12.
Emissions of fine particles have been shown to have a large impact on the atmospheric environment and human health. Researchers have shown that gasoline engines, especially direct injection spark ignition (DISI) engines, tend to emit large amounts of small size particles compared to diesel engines fitted with diesel particulate filters (DPFs). As a result, the particle number emissions of DISI engines will be restricted by the forthcoming EU6 legislation. The particulate emission level of DISI engines means that they could face some challenges in meeting the EU6 requirement. This paper is an experimental study on the size-resolved particle number emissions from a spray guided DISI engine and the performance of a catalytic volatile particle remover (VPR), as the EU legislation seeks to exclude volatile particles. The performance of the catalytic VPR was evaluated by varying its temperature and the exhaust residence time. The effect of the catalytic VPR acting as an oxidation catalyst on particle emissions was also tested. The results show that the catalytic VPR led to a marked reduction in the number of particles, especially the smaller size (nucleation mode) particles. The catalytic VPR is essentially an oxidation catalyst, and when post three-way catalyst (TWC) exhaust was introduced to the catalytic VPR, the performance of the catalytic VPR was not affected much by the use of additional air, i.e., no significant oxidation of the PM was observed.  相似文献   

13.
Different polysaccharides (NPS1-1 and BPS1-1) were obtained from Schisandra sphenanthera and Schisandra chinensis fruits by hot-water extraction, DEAE-52 ion-exchange column chromatography and Sephadex G-150 gel filtration chromatography. Structure characteristic and antioxidant properties of NPS1-1 and BPS1-1 were comparatively investigated by gas chromatography, Fourier transform infrared spectroscopy, scanning electron microscopy, multi-angle laser light scattering analysis, atomic force microscope, circular dichroism spectroscopy, scavenging DPPH free radicals assay, ferric-reducing power assay and lipid peroxidation inhibition assay, respectively. Results showed that physicochemical and antioxidant properties of NPS1-1 and BPS1-1 were different from each other. Molecular weights of NPS1-1 and BPS1-1 were 2.22 × 106 and 2.66 × 106, respectively. NPS1-1 and BPS1-1 could be a kind of rhamnogalacturonan, and the sugar chain contained pyran configurations and β-glycosidic linkages. Significant differences in the surface features and particle distribution of NPS1-1 and BPS1-1 were detected. NPS1-1 showed higher antioxidant abilities on ferric-reducing power and lipid peroxidation inhibition activity. The results would be helpful for the further use of the two fruits.  相似文献   

14.
Resistant starches were isolated from four banana cultivars: Musa AAA Cavendish, Musa ABB Bluggoe, Musa ABB Pisan Awak, and Musa AA Pisang mas. The structural and physicochemical properties of banana resistant starches were studied. Results showed that the particle size and shape of four banana resistant starches were different. Cavendish and Bluggoe banana resistant starch had a C-type crystalline structure, whereas Pisan Awak and Pisang mas had a B-type. The water-holding capacity of Pisang mas was the maximum. The solubility of Pisan Awak and Pisang mas was higher as compared to Cavendish and Bluggoe. The transparency of Cavendish banana resistant starch was the highest. More amylose was observed in Bluggoe and Pisan Awak banana resistant starch, whereas more amylopectin was observed in Cavendish and Pisang mas banana resistant starch. The initial pasting temperatures of Cavendish and Bluggoe banana resistant starches were higher as compared to Pisan Awak and Pisang mas banana resistant starch. The peak viscosity of Cavendish banana resistant starch was the highest in these four samples. The heat stability of Bluggoe banana resistant starch was the best one in the four banana resistant starches. The retrogradation was hard in the case of Bluggoe and Pisan Awak banana resistant starch. In conclusion, the properties of the four banana resistant starch samples were not the same, indicating that these could be used in different food products.  相似文献   

15.
Global models have indicated agriculturally impacted rivers and streams may be important sources of the greenhouse gas nitrous oxide (N(2)O). However, there is significant uncertainty in N(2)O budgets. Isotopic characterization can be used to help constrain N(2)O budgets. We present the first published measurements of the isotopic character of N(2)O emitted from low (2-4) order streams. Isotopic character of N(2)O varied seasonally, among streams, and over diel periods. On an annual basis, δ(18)O of emitted N(2)O (+47.4 to +51.4‰; relative to VSMOW) was higher than previously reported for larger rivers, but δ(15)N of emitted N(2)O (-16.2 to +2.4‰ among streams; relative to atmospheric N(2)) was similar to that of past studies. On an annual basis, all streams emitted N(2)O with lower δ(15)N than tropospheric N(2)O. Given these streams have elevated nitrate concentrations which are associated with enhanced N(2)O fluxes, this supports the hypothesis that streams are contributing to the accumulation of (15)N-depleted N(2)O in the troposphere.  相似文献   

16.
17.
The long-term (1950-2050) global fate of perfluorooctanoate (PFO) is investigated using the global distribution model, GloboPOP. The model is used to test the hypotheses that direct PFO emissions can account for levels observed in the global oceans and that ocean water transport to the Arctic is an important global distribution pathway. The model emission scenarios are derived from historical and projected PFO emissions solely from direct sources. Modeled ocean water concentrations compare favorably to observed PFO concentrations in the world's oceans and thus ocean inventories can be accounted for by direct sources. The model results support the hypothesis that long-range ocean transport of PFO to the Arctic is important and estimate a net PFO influx of approximately 8-23 tons per year flowing into the model's Northern Polar zone in 2005, an amount at least 1 order of magnitude greater than estimated PFO flux to the Arctic from potential indirect sources such as atmospheric transport and degradation of fluorotelomer alcohols. Modeled doubling times of ocean water concentrations in the Arctic between 1975 and 2005 of approximately 7.5-10 years are in good agreement with doubling times of PFO in Arctic biota estimated from monitoring data. The model is further applied to predict future trends in PFO contamination levels using forecasted (2005-2050) direct emissions, including substantial reductions committed to by industry. Modeled ocean water concentrations in zones near to sources decline markedly after 2005, whereas modeled concentrations in the Arctic are predicted to continue to increase until approximately 2030 and show no significant decrease for the remaining 20 years of the model simulation. Since water is the primary exposure medium for Arctic biota, these model results suggest that concentrations in Arctic biota may continue to rise long after direct emissions have been substantially reduced or eliminated.  相似文献   

18.
以我国南北方种植的3种栗属坚果(板栗、锥栗和日本栗)为原料提取淀粉,通过扫描电镜(SEM)、X射线衍射仪(XRD)、差示扫描量热仪(DSC)、快速黏度仪(RVA)等仪器和方法,研究14个品种淀粉的颗粒结构和理化特性的差异,并对其进行相关性分析。结果表明:栗属坚果的直链淀粉含量差异显著,淀粉颗粒形态较为复杂,颗粒表面光滑完整;淀粉均属于C型晶体,结晶度为20.43%~25.63%,淀粉的冻融稳定性好。不同品种淀粉的颗粒结构和理化特性之间存在多种相关性,说明直链淀粉含量和结晶结构影响淀粉的理化性质。  相似文献   

19.
20.
In this first ever study, particulate matter (PM) emitted from the lubrication system overboard breather vent for two different models of aircraft engines has been systematically characterized. Lubrication oil was confirmed as the predominant component of the emitted particulate matter based upon the characteristic mass spectrum of the pure oil. Total particulate mass and size distributions of the emitted oil are also investigated by several high-sensitivity aerosol characterization instruments. The emission index (EI) of lubrication oil at engine idle is in the range of 2-12 mg kg(-1) and increases with engine power. The chemical composition of the oil droplets is essentially independent of engine thrust, suggesting that engine oil does not undergo thermally driven chemical transformations during the ~4 h test window. Volumetric mean diameter is around 250-350 nm for all engine power conditions with a slight power dependence.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号