首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
为了研究动静组合SHPB加载下砂岩变形破坏、能量演化特性,运用LS-DYNA软件建立相关数值模型,在满足一维应力和应力应变均匀化假定的前提下,以轴压和围压为变量进行模拟分析.模拟结果表明:轴压比小于0.4时,砂岩动态抗压强度表现出线性率效应,轴压和围压使得砂岩发生压剪破坏和层间错动破坏,对砂岩能耗规律影响较大,但单一能量的变化趋势几乎不受影响;一维动静组合模拟中,轴压为20 MPa时,随着加载应变率的增加,能量利用率先增加后减小,轴压为40 MPa时,能量利用率持续下降;三维动静组合模拟中,围压对于能量利用率的影响规律较为复杂,但总体上呈下降趋势.  相似文献   

2.
为揭示滇东矿区松软煤体在加载破坏过程中的力学特性和能量演化规律,基于MTS815.03岩石力学实验系统对原煤试样进行不同围压条件下的三轴压缩实验。结果表明:煤样的峰值应力、弹性模量与围压存在指数函数关系;峰值应变、泊松比随围压呈线性增加;围压效应使煤样的破坏从延塑性向脆性转变,破坏模式由局部剪切形态向整体劈裂形态发展;围压对煤样变形破坏过程中能量演化影响显著。随着围压的增大,极限弹性能与峰值总能量均呈近似线性增加,积聚的极限弹性能对煤样的破坏起重要作用,宏观表现为高围压条件下煤样破坏较低围压剧烈。  相似文献   

3.
在深部开挖工程中,深部岩石往往经历"三轴高应力+开挖卸荷+动力扰动"的全应力过程.为了研究围压卸荷对深部预应力岩石的动态破坏特征的影响,采用改进的分离式霍普金森压杆对红砂岩进行了一系列三轴卸荷动态压缩试验,还进行了单轴预应力冲击压缩试验(不考虑围压卸荷效应).结果表明,红砂岩的动态抗压强度表现出明显的应变率效应.在应变...  相似文献   

4.
针对杂质盐岩蠕变力学特性问题,利用大型程控流变仪,对两种不同杂质盐岩进行分级加载下的三轴蠕变试验。试验结果表明:围压和杂质含量不同,盐岩破坏形态及力学参数均有差异。围压小于临界围压,盐岩呈剪切破坏;围压大于临界围压,盐岩呈大变形鼓状破坏。围压和杂质含量一定,岩盐稳态速率随偏应力增加呈指数增长;偏应力和杂质含量一定,蠕变速率随围压增大而降低,长期强度有所增大;偏应力和围压一定,低杂质(ω=2.1%)盐岩稳态蠕变速率高于高杂质(ω=46.8%)盐岩。体积变形经历了压密期-平静期-扩容期3个阶段,高杂质盐岩体积应变低于低杂质盐岩。将不溶物杂质含量与应力敏感性常数n的关系同分数阶蠕变本构方程进行耦合,建立耦合杂质的盐岩分数阶非定常蠕变模型;将理论模型与试验数据对比分析证实了该模型的合理性。  相似文献   

5.
利用MTS815电液伺服控制刚性试验机进行不同围压下茅口灰岩三轴压缩试验,通过计算绘得相应裂隙体积应变图,分析得出裂纹起始应力、裂纹破坏应力。结果表明:随着围压的增大,应力门槛值均呈非线性增长态势,当围压超过17 MPa时,裂纹起始应力、裂纹破坏应力分别增加48.5%和20.1%,茅口灰岩延性开始增强;裂纹破坏应力为峰值强度的64%~75%,三轴压缩下茅口灰岩裂隙不稳定发展阶段较长;环向应变值随围压增大而增大,当轴力超过裂纹破坏应力进入裂隙不稳定发展阶段,环向应变增大2.7~3.2倍,用环向-轴向应力应变曲线图能较好的反映岩石应力门槛值。  相似文献   

6.
含杂质盐岩三轴蠕变特性试验研究(研究生论坛稿件)   总被引:1,自引:0,他引:1  
针对杂质盐岩蠕变力学特性问题,利用四川大学大型程控流变仪,对两种不同杂质盐岩进行了分级加载下的三轴蠕变试验。试验结果表明:围压和杂质含量不同,盐岩破坏形态以及力学参数均有差异。围压小于临界围压,盐岩呈剪切破坏,围压大于临界围压,盐岩呈大变形鼓状破坏;围压和杂质含量一定,岩盐稳态速率随偏应力增加呈指数增长;偏应力和杂质含量一定,蠕变速率随围压增大而降低,长期强度有所增大;偏应力和围压一定,低杂质(ω=2.1%)盐岩稳态蠕变速率高于高杂质(ω=46.8%)盐岩。体积变形经历了压密期-平静期-扩容期三个阶段,高杂质盐岩体积应变低于低杂质盐岩。将不溶物杂质含量与应力敏感性常数n的关系同分数阶蠕变本构方程进行耦合,建立了耦合杂质的盐岩分数阶非定常蠕变模型,将理论模型与试验数据对比分析证实了该模型的合理性。  相似文献   

7.
基于2种卸荷应力路径和常规三轴压缩试验,研究了加卸载条件下花岗岩的变形破坏及应力脆性跌落特征。卸荷条件下岩石变形主要是向卸荷(主)方向回弹或拉伸变形为主,而非或次卸荷方向的塑性变形很小,峰后应力应变曲线呈现明显的脆性特征。而加载条件下岩石以轴向压缩变形为主,且压缩塑性变形随围压增大而增大;卸荷条件下破坏岩石各种级别的张拉裂缝较多,张裂面一般垂直于卸荷主方向,高初始围压时双向卸荷甚至在次卸荷方向也可产生环形张拉裂缝。破坏围压较高时破裂面剪性特征相对明显,但剪性裂面一般追踪张性破裂面发展而成,并在剪切面两侧发育较多微张裂缝。而相对较高围压下常规三轴压缩岩石一般为剪切破坏,张性裂缝很少;常规三轴压缩岩石的应力脆性跌落系数随围压的增大而增大,而在卸荷条件下却随初始围压的增大而减小。相同初始围压时,卸荷条件下比加载时的应力脆性跌落系数小得多,方案Ⅱ在初始围压达到30 MPa时甚至出现负值,应力脆性跌落系数R依次为:RⅢ〉RⅠ〉RⅡ。  相似文献   

8.
为分析堆石的蠕变规律和研究颗粒破碎与蠕变的关系,对某堆石料进行了不同应力水平和围压下的大型三轴排水蠕变试验。蠕变试验后通过筛分试验测量了堆石的颗粒破碎程度。结果表明堆石的蠕变变形与应力水平和围压有关;轴向蠕变和体积蠕变随应力水平的增大而增大,应力水平相同时则随围压增大而增大。堆石的应变一时间关系可用幂函数表示,轴向应变一应力关系和体积应变一应力关系分别满足双曲线函数和线性比例函数。随应力水平和围压的增大,堆石颗粒破碎增多。堆石颗粒破碎可用相对颗粒破碎指数度量,其与轴向蠕变和体积蠕变近似呈线性比例关系。  相似文献   

9.
三维动静组合加载下花岗岩能量耗散试验研究   总被引:4,自引:0,他引:4  
利用改造的三维霍普金森试验系统(split Hopkinson pressure bar, SHPB),选取4个轴压水平(25, 50, 75和100 MPa)和4个围压水平(0, 5, 10和15 MPa),对应开展4种应变率(约70, 90, 110和130 s-1)下花岗岩三维动静组合加载试验研究,分析静载轴压、静载围压和应变率对花岗岩受冲击过程中能量耗散的影响规律,并讨论其破坏模式。试验结果表明:轴压增大时,花岗岩破坏时单位体积吸收能逐渐降低;围压或应变率增大时,单位体积吸收能逐渐升高。岩石储能极限在能量耗散过程中发挥关键作用,且不同情况下具体表现不同:储能极限与初始储能的差值影响岩石受冲击时的吸能值;当岩石在静载下进入损伤阶段初期时,储能极限与初始储能的比值决定岩石受冲击时的释能值;当岩石在静载下进入损伤阶段后期甚至发生屈服时,储能极限值正比于岩石释能值。此外,岩石破坏模式与单位体积耗散能关系密切:应变率相似静载组合变化时,破碎程度与单位体积吸收能变化呈负相关;静载组合确定应变率梯度变化时,破碎程度与单位体积吸收能变化呈正相关。  相似文献   

10.
利用改造的三维霍普金森试验系统(split Hopkinson pressure bar, SHPB),选取4个轴压水平(25, 50, 75和100 MPa)和4个围压水平(0, 5, 10和15 MPa),对应开展4种应变率(约70, 90, 110和130 s-1)下花岗岩三维动静组合加载试验研究,分析静载轴压、静载围压和应变率对花岗岩受冲击过程中能量耗散的影响规律,并讨论其破坏模式。试验结果表明:轴压增大时,花岗岩破坏时单位体积吸收能逐渐降低;围压或应变率增大时,单位体积吸收能逐渐升高。岩石储能极限在能量耗散过程中发挥关键作用,且不同情况下具体表现不同:储能极限与初始储能的差值影响岩石受冲击时的吸能值;当岩石在静载下进入损伤阶段初期时,储能极限与初始储能的比值决定岩石受冲击时的释能值;当岩石在静载下进入损伤阶段后期甚至发生屈服时,储能极限值正比于岩石释能值。此外,岩石破坏模式与单位体积耗散能关系密切:应变率相似静载组合变化时,破碎程度与单位体积吸收能变化呈负相关;静载组合确定应变率梯度变化时,破碎程度与单位体积吸收能变化呈正相关。  相似文献   

11.
采用全应力多场耦合三轴试验仪,对饱和花岗岩开展了不同加载速率、不同围压、不同孔压下的水-力耦合三轴压缩排水试验,分别给出了饱和花岗岩在不同加载速率、不同有效围压下的应力-应变曲线,分析了峰值强度、峰值应变、弹性模量随加载速率以及有效围压的变化规律。研究结果表明:(1)在不同有效围压和加载速率的条件下,岩样的应力应变曲线均经历了非线性压密、弹性、屈服、峰后四个阶段。偏压加载初期非线性压密阶段比较明显,而随着围压的升高非线性段逐渐消失;由于花岗岩的致密性较高,因而曲线的弹性阶段较长且相对平滑;在屈服和峰后阶段,岩石呈现出明显的脆—延性转化的过程。(2)饱和花岗岩的峰值强度随着加载速率的增加而增大;且当有效围压相同时,岩石的峰值强度大致相等,抵抗外界荷载的能力大致相同。(3)缓慢加载条件下饱和花岗岩的峰值应变表现出加载速率强化效应,但强化效果是有限的;且在有效围压相同条件下,随着围压和孔压的同步增长,峰值应变也呈增长的趋势。(4)弹性模量随着加载速率的增加呈二次多项式增长,但随着围压和孔压的同步增长而逐渐降低。  相似文献   

12.
为研究水泥改良高液限土的抗剪强度随压实度的变化情况,进行了水泥掺量为2%的高液限土在不同压实度、不同围压下的三轴试验.试验结果发现:掺水泥高液限土在低压实度下,应力应变曲线呈应变硬化型,且呈鼓胀型破坏.仅在高压实度、低围压下,试验中应力应变曲线才呈应变软化型,且试样破坏时会出现较为明显剪切带.同时,从试验成果的整理中发现:随压实度增大,掺水泥高液限土抗剪强度随围压的增大而增大,但增长率逐步减小.而在同一围压下,不同压实度试样随着压实度的增长,抗剪强度不断增大,且增长率也不断增大,但为非线性增长.  相似文献   

13.
采用WF应力路径三轴仪,对天津滨海海积软土进行了不同围压、不同应变速率的三轴固结不排水剪切试验(CU),分析了不同应变速率对海积软土试样的应力一应变关系、有效应力及试样破坏形态的影响.结果表明:CU试验应力一应变关系呈硬化特征,剪应力峰值随着应变速率的增大而增大,而孔压变化值则随着应变速率的增大而逐渐减小;不同应变速率的有效应力路径在相同固结压力下基本一致,因而正常固结黏土的有效应力路径具有唯一性;同时,应变速率对总应力强度有所影响,总应力的内摩擦角随着应变速率的增大而增大.  相似文献   

14.
三轴压缩条件下胶结充填体能量耗散特征分析   总被引:1,自引:0,他引:1  
开展不同灰砂配比、质量分数的充填体三轴压缩试验,研究了不同围压加载阶段充填体的能量耗散与围压、应变以及应力的内在关系.结果表明,在低围压时,充填体的极限抗压强度低;随着围压的增加,充填体的峰值强度随之增大,峰前能耗占总能耗的比重越来越大,说明充填体屈服阶段吸收的能量占总能量的比重提高,围压的增大能够提高充填体的破坏能耗量;充填体的峰前能耗量、峰后能耗量、单位体积变形能以及总能耗与围压呈二次函数曲线关系.当围压一定时,充填体在弹性变形阶段的能量变化与轴向应力、偏应力均呈线性关系,与轴向应变呈指数函数曲线关系;随着轴向载荷增加,能量随轴向应力、偏应力变化的增长速率加大.  相似文献   

15.
以合肥膨胀土为研究对象,利用GDS真动三轴仪对土体进行循环动荷载试验,研究不同围压、固结应力比对土体动弹性模量及阻尼比的影响规律.试验结果表明,合肥膨胀土的骨干曲线可以由双曲线描述;在相同条件下,动弹性模量随着围压、固结应力比的增大而增大,随着动应变的增大先急剧减小后趋于平缓;动弹性模量的倒数与动应变呈良好的线性关系,最大动弹性模量随着围压的增大呈线性增大,给出考虑围压影响的最大动弹性模量回归方程;阻尼比随着围压、固结应力比的增大而减小,采用 Darendeli 模型及依据阻尼比与应变的经验关系,得到动模量比衰减模型及阻尼比模型;不同围压、固结应力比下阻尼比与动模量比的关系归一化后可以由修正Hardin-Drnevich公式描述.  相似文献   

16.
为研究卸围压条件下花岗岩强度特性和三维裂隙演化规律,对花岗岩开展了常规三轴压缩、卸围压-加轴压和分级卸围压-加轴压循环加卸载3种不同应力路径力学试验,获得对应的轴、径向应力-应变曲线;采用CT扫描三维重构技术获得岩石卸围压过程中和破坏后内部裂隙分布三维图像.结果表明:相对于常规三轴压缩试验,试件在卸荷条件下脆性破坏特征更加显著,分级卸围压-加轴压循环加卸载会增大花岗岩的峰后延性,降低破坏轴压和破坏剧烈程度;两种卸围压方案都会使花岗岩的承载能力降低30%左右;卸荷作用下花岗岩宏观破裂为拉剪组合状,拉剪过渡不明显,表观裂隙是内部裂隙向外扩展的结果;花岗岩在卸荷作用下峰前产生的裂隙量较少,大量裂隙在峰后产生,破裂具有突发性和瞬时性,围压较低时宏观裂隙首先在试件边缘产生,围压较高时宏观裂隙首先在试件中部产生.  相似文献   

17.
在6种不同围压条样下,对由不同掺量体积率的聚乙烯醇(PVA)纤维制成的标准圆柱体Φ50 mm×100 mm试样进行常规三轴压缩试验,研究了围压和纤维体积率对试样的峰值应力、峰值应变及本构方程的影响。研究结果表明:在常规三轴受压状态下,随着围压及PVA纤维体积率的增加,试样的峰值应变大于峰值应力,破坏试样所做的功也随之增大,且围压对试样峰值应变及应力的影响程度比纤维体积率大,达到试样峰值应力之后,纤维体积率的影响显著下降。侧向围压对试样的横向变形及裂缝发展有显著的约束效果,应力应变曲线符合过镇海模型。  相似文献   

18.
基于破坏类型的本溪灰岩本构关系研究   总被引:1,自引:1,他引:0  
根据单轴和三轴条件下本溪灰岩的压缩试验和峰后循环加载试验,总结本溪灰岩的强度、变形随围压的变化规律,研究不同围压下本溪灰岩的破坏过程和重复加载过程,分析不同应力条件下本溪灰岩破坏的方式.结果表明:本溪灰岩在应力刚过峰值且未完全进入残余强度阶段,其弹性模量与峰前相同,此阶段进行循环加载时,新的峰值应力低于卸载点应力;在残余强度阶段,残余强度不再随重复加载发生明显变化;采用比较峰值时的环向弹性应变值与环向应变值的方法来判别本溪灰岩的破坏类型是可行的;不同围压下,本溪灰岩的破坏方式有张性破坏和剪切破坏2种类型,这2种破坏方式下本构模型的控制参数是不同的.分别选取了环向应变和剪切应变作为控制参数建立了本构模型,该模型很好地描述了本溪灰岩峰后阶段的应力脆性跌落现象及应力与应变的关系.  相似文献   

19.
岩石的应力—应变全过程曲线以峰值应力为界,通常分为破坏前区和破坏后区两部分。由于岩石破坏后区的力学特性对诸多岩石工程,如地下巷道、矿柱和岩爆等具有重要的工程意义,因此,此方面的研究已受到理论界和工程界的重视。岩石的破坏后区一般处于非稳定状态,当软化速率较大时,其力学响应用经典的应变软化模型来模拟计算难以收敛,而可以考虑采用脆塑性模型。使用RMT-150B型岩石力学试验系统,在轴向应变率保持为常数的条件下,对贵溪红砂岩进行了常规三轴压缩破坏试验,得到了不同围压下岩石的应力—应变全过程曲线。利用试验得到的应力—应变全过程曲线,得到了红砂岩的应力脆性跌落系数与围压的关系表达式,为采用非理想脆塑性模型对红砂岩介质及其中的构筑物进行数值分析提供了依据。  相似文献   

20.
针对西部矿区弱胶结软岩在复杂应力状态下的损伤行为,采用三轴压缩试验和等效应变原理,得到泥岩在三轴压缩下损伤变量的演化规律.基于weibull分布,引入修正系数λ建立可考虑泥岩残余阶段变形的统计损伤本构模型.结果分析表明:在三轴压缩下损伤变量呈先减小后增大的变化趋势,损伤演化过程没有水平段,表明受压时泥岩没有实际意义上的线弹性阶段;损伤变量减增变化的转折点恰好为全应力-应变曲线的屈服点和残余阶段起始点,说明该类泥岩的破坏起始于屈服点;当围压<3 MPa时,损伤起始点随围压增大而后移,当围压>3 MPa时,损伤初始点有前移的趋势,高围压下泥岩的峰前塑性提高,产生整体塑性剪切破坏;本构模型能够较准确地描述泥岩破坏的三阶段.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号