首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Reactive separation technologies were proposed recently for fatty acid methyl esters (FAME) production, providing significant benefits such as minimal capital and operating cost savings. One approach is to use a reactive dividing-wall column (R-DWC) for the biodiesel production process. However, since the R-DWC is designed for a quaternary reactive system – two reactants (one in excess) and two products – more difficulties concerning the process control may be expected considering the high degree of integration of the process.  相似文献   

2.
An innovative entrainer-enhanced reactive distillation (RD) process is presented, which aims to the production of high-purity butyl cellosolve acetate from butyl cellosolve and acetic acid via an esterification reaction. This entrainer-enhanced RD process can procure technical advantages from both heterogeneous azeotropic distillation and RD. Solvents such as cyclohexane, ethylene dichloride, toluene, and octane are considered as candidates in this esterification RD process. The function of entrainers is to simplify the separation between water and acetic acid. For this purpose, the proper entrainer to use is thus evaluated based on its mutual solubility with water in two liquid phases. Simulation results reveal that total annual cost can be substantially reduced when cyclohexane, toluene, and octane are used as entrainers in the RD column. The octane-enhanced RD provides the most economical design in this studied case.  相似文献   

3.
The separation of azeotropes has substantial energy and investment costs, and the available methods require high capital costs for reconstruction of process plants. As an alternative, a semicontinuous configuration that utilizes an existing plant with minor modifications has been explored. In this paper, a semicontinuous, heterogeneous azeotropic distillation process is proposed and acetic acid dehydration process is used as a case study. To carry out the simulation work, Aspen HYSYS® simulation software is used along with MATLAB® and an interface program to handle the mode-transition of the semicontinuous process. Sensitivity analyses on operating parameters are performed to identify the process limits. Comparisons are made to conventional heterogeneous azeotropic distillation, and dividing-wall distillation column on the annual cost. The results proved that the semicontinuous system is the best setup in terms of total annual costs and energy requirements.  相似文献   

4.
A generalized disjunctive programming formulation is presented for the optimal design of reactive distillation columns using tray-by-tray, phase equilibrium and kinetic based models. The proposed formulation uses disjunctions for conditional trays to apply the MESH and reaction kinetics equations for only the selected trays in order to reduce the size of the nonlinear programming subproblems. Solution of the model yields the optimal feed tray locations, number of trays, reaction zones, and operating and design parameters. The disjunctive program is solved using a logic-based outer-approximation algorithm where the MILP master problem is based on the big-M formulation of disjunctions, and where a special initialization scheme is used to reduce the number of initial NLP subproblems that need to be solved. Two examples are presented that include reactive distillation for the metathesis reaction of 2-pentene and for the production of ethylene glycol. The results show that the proposed method can effectively handle these difficult nonlinear optimization problems.  相似文献   

5.
    
This work presents a novel integrated reactive-separation design based on a dividing-wall column (DWC) applied to an industrial case study within AkzoNobel Chemicals. To the best of our knowledge this is one of the first reported industrial applications of a reactive DWC. Due to changing market conditions, one of the by-products in a plant became more economically attractive than the main product. However, the design of the existing plant does not allow an increase of the by-product production rate at the cost of the main product. To solve this problem we developed a novel integrated design that combines reaction and separation into a feasible reactive DWC that allows 35% savings in capital and 15% savings in energy costs. This article describes the novel reactive DWC design, presents the rigorous simulation results, and makes a comparison with the base case alternative.  相似文献   

6.
Acetic acid dehydration is an important operation in the production of aromatic acid, such as terephthalic acid or in the manufacture of cellulose acetate. Although acetic acid and water does not form azeotrope, but using simple distillation to separate these two components is not practical. The reason is because the system has tangent pinch on the pure water end, thus it is more customary in industry to use an entrainer via a heterogeneous azeotropic distillation column system for the separation. In this study, a suitable entrainer is selected from three candidate acetates through rigorous steady-state simulation of this system. Optimum process design and operating condition are determined to keep high-purity bottom acetic acid composition and also keep a small acetic acid loss through top aqueous draw. Furthermore, the overall control strategy of this column system is proposed to hold both bottom and top product specifications in spite of feed rate and feed composition load disturbances. The proposed overall control strategy is very simple requiring only one tray temperature control loop inside the heterogeneous azeotropic column.  相似文献   

7.
共沸法回收吡啶的研究和设计   总被引:2,自引:0,他引:2  
介绍了利用共沸精馏的方法,对比选择不同共沸剂进行高纯度吡啶回收的理论和实验研究,设计出合适的工艺流程和工艺条件,得到了满意的结果。并在实验数据的指导下设计建立了一套工业装置,得到了纯度大于99.5%的吡啶产品。实践证明,用共沸精馏的原理所设计的分离工艺对于处理一系列含水共沸物系是行之有效的。  相似文献   

8.
    
This paper deals with design and control of an extractive dividing-wall distillation column (EDWC) for ethanol dehydration using ethylene glycol as entrainer. An initial design, based on a section analogy procedure for a conventional extractive distillation sequence, was obtained and then used in an optimization process to minimize the total annual cost. It was shown that the EDWC can result in significant savings over the conventional process. As these savings sometimes go along with a decrease in the control properties, an investigation of two control structures for the EDWC and one for the conventional column configuration was performed next.It was observed in closed-loop simulations that the EDWC with an appropriate structure exhibited good control properties and that its closed-loop responses were similar to those obtained for the operation of a conventional extractive distillation system.  相似文献   

9.
In our previous study [Chien, I.L., Zeng, K.L., Chao, H.Y., Liu, J.H. (2004). Design and control of acetic acid dehydration system via heterogeneous azeotropic distillation. Chemical Engineering Science 59(21), 4547-4567.], an acetic acid dehydration system has been designed. The suitable entrainer selected for that system is iso-butyl acetate. Design and control of the system has been studied in detail to maintain high-purity bottom acetic acid concentration and also keep a small acetic acid loss through top aqueous draw. In that previous study, the feed composition is assumed to contain equal molar of acetic acid and water. However, in a typical waste acid recovery application, the above assumption may be too rich in acetic acid. In this paper, a feed stream containing 80 mol% water and 20 mol% of acetic acid is investigated. Several design alternatives can be deduced including one commonly used in industry by adding a pre-concentrator column in the upstream of a heterogeneous azeotropic distillation column. The necessity of this pre-concentrator column from design and control view points will be thoroughly investigated in this paper. The final recommended process design is a tradeoff between total annual cost (TAC) and operability of the system. The recommended design is a single heterogeneous azeotropic distillation column with aqueous reflux stream. Very wide feed composition and flow rate changes can be handled by this design with proper choice of the overall control strategy.  相似文献   

10.
In this article, we present practical solutions (in the case of entrainers which add no azeotropes) to two problems of industrial relevance: Given a binary azeotrope which we want to separate into pure components, and a set of candidate entrainers, how do we determine which one is the best? Also, for each of these entrainers, what is the flowsheet of the feasible separation sequence(s)? We obtain these solutions by analyzing in details the mechanisms by which heavy, intermediate and light entrainers make separation feasible, using the new notions of equivolatility curves, of isovolatility curves and of local volatility order. We show that the second question finds an easy solution from the volatility order diagram. This analysis shows that a good entrainer is a component which “breaks” the azeotrope easily (i.e., even when its concentration is small) and yields high relative volatilities between the two azeotropic constituents. Because these attributes can be easily identified in an entrainer from the equivolatility curve diagram of the ternary mixture azeotropic component #1 — azeotropic component #2 — entrainer, we can easily compare entrainers by examining the corresponding equivolatility curve diagrams. Finally, we demonstrate the validity and limits of this method with examples.  相似文献   

11.
    
Due to the topological structure of double columns and multiple separating sections in dividing-wall distillation columns (DWDCs), the development of vapor recompressed dividing-wall distillation columns (DWDC-VRHPs) represents a challenging issue with great complexities and tediousness. For the separations of light-component dominated and wide boiling-point ternary mixtures, because the purification of the light-component from the intermediate-and heavy-components incurs the primary energy dissipation, the application of vapor recompressed heat pumps (VRHP) should be aimed to reduce the irreversibility and this leads to the generation of the optimum topological structures of the DWDC-VRHPs, i.e., a DWDC plus a two-stage VRHP. The first-stage VRHP is to preheat feed, not only taking the advantages of the small temperature elevation available but also favoring the mass transfer between the vapor and liquid phases through feed splitting. The second-stage VRHP is to reduce further separation irreversibility. The philosophy can be applied to any DWDCs no matter where the dividing wall locates. Two case studies on the separations of ternary mixtures of benzene, toluene, and o-xylene and n-pentane, n-hexane, and n-heptane demonstrate the economic optimality of the proposed DWDC-VRHPs and reveal the inherent interplay between internal and external process integration.  相似文献   

12.
在 PTA 装置中溶剂脱水正常采用两种方法:常规精馏和共沸精馏。从能耗和物耗以及方便操作的角度,通常选用共沸精馏,而采用共沸精馏时,共沸剂的选择是一个比较关键的因素。笔者从共沸剂的性能、消耗、能耗以及塔的选择方面进行了比较与探讨,为共沸精馏塔的共沸剂选择提供了一个参考。  相似文献   

13.
    
The design and construction of a prototype of a dividing‐wall distillation column was possible by integrating previous knowledge in process intensification, energy savings, theoretical control properties, and closed‐loop dynamics of thermally coupled distillation sequences. In order to achieve the predicted energy savings for this class of complex distillation column, a dividing wall and a side tank were implemented in order to manipulate the internal flows associated with energy consumption. The reaction between ethanol and acetic acid was conducted within the prototype, and the experimental results indicate that a heterogeneous mixture of ethyl acetate and water is obtained as the top product. The temperature profile measured during the experimental run can be used for controlling the batch distillation column in cyclic operation mode.  相似文献   

14.
隔板塔共沸精馏分离二氯甲烷-乙腈-水-硅醚体系   总被引:2,自引:3,他引:2       下载免费PDF全文
以二氯甲烷-乙腈-水-硅醚为分离体系,采用自制隔板塔小试装置,研究了共沸剂回流比和液相分配比等操作参数对隔板塔分离效果的影响。实验结果表明,当气相分配比Rv为0.5,共沸剂回流比为3时,液相分配比Rl在[0.12,0.2]范围内,隔板塔分离效果较好。在实验的基础上,采用Aspen Plus软件对隔板塔共沸精馏工艺进行模拟,考察了隔板塔共沸精馏工艺最佳操作区域及节能效果。模拟结果表明,特定分离要求下,隔板塔存在一个使再沸器热负荷最小的最佳操作区域,在此最佳操作区域内,Rl和Rv相互关联,呈一一对应关系;与三塔串联简单精馏工艺相比,完成相同的分离任务,隔板塔共沸精馏工艺再沸器节能32.74%,冷凝器热负荷减少33.70%,乙腈回收率由66.47%提高到96.01%,且大幅降低设备投资。  相似文献   

15.
牛玉锋  刘振华  乔凯  陈明 《当代化工》2011,40(6):560-561,564
由于乙二醇及1,2一丙二醇的沸点相近,采用常规精馏方法难以分离。本文通过非均相共沸精馏的方法采用乙苯、混合二甲苯、异丙苯三种共沸剂进行实验,结合共沸剂的选择性和共沸物的共沸点来确定共沸剂。通过实验结果分析发现混合二甲苯能明显提高乙二醇及1,2一丙二醇的挥发度,是分离乙二醇及l,2一丙二醇良好的共沸剂。  相似文献   

16.
研究了乙醇脱水塔内的两相共沸精馏和汽液液三相共沸精馏过程。利用Aspen plus模拟软件对乙醇脱水塔内4种工况的精馏曲线、共沸剂浓度分布、回流量和再沸器能耗进行了分析比较。结果表明,苯做共沸剂时,脱水塔内两相共沸精馏和汽液液三相共沸精馏的精馏曲线、共沸剂浓度分布、回流量和再沸器能耗相近,脱水塔精馏曲线都跨越了精馏边界,并且共沸剂在塔内大多数板上都有较高浓度分布。而环己烷做共沸剂时,两相共沸精馏工况和汽液液三相共沸精馏工况条件下的脱水塔内精馏曲线、共沸剂浓度分布、回流量和再沸器能耗有较大差别。汽液液三相共沸精馏工况条件下,环己烷在塔内大多数板上有较高浓度分布,起到较好的脱水作用,而两相共沸精馏工况条件下脱水塔内共沸剂仅分布在塔顶几块塔板上,塔内多数板上没有起到共沸剂作用。  相似文献   

17.
甲醇-碳酸二甲酯二元共沸物的分离   总被引:1,自引:0,他引:1  
肖杨 《浙江化工》2009,40(1):4-6
分别用共沸精馏法和萃取精馏法对甲醇一碳酸二甲酯(DMC)二元共沸体系进行了分离,通过正交实验分别得到了最佳分离工艺条件。实验结果表明,共沸精馏法的最佳分离工艺条件:共沸剂正己烷用量为总质量(共沸剂+甲醇)的76%,回流比控制在3:1,馏出速率为6mL/min;萃取精馏法的分离最佳工艺条件:以糠醛为萃取剂,回流比控制在3:1,萃取剂滴加速率为3mL/min,萃取剂配比为4:1。并分别从装置和纯度方面对两种方法进行比较,结果表明萃取精馏法占优。  相似文献   

18.
PTA装置溶剂脱水塔模拟及塔板效率分析   总被引:1,自引:0,他引:1  
精对苯二甲酸装置溶剂脱水塔在去除氧化反应生成水,保持整个氧化单元水含量稳定,减少醋酸消耗中起到核心作用。基于ASPEN PLUS流程模拟软件,以模型计算偏差最小为目标,通过调整板效率,实现溶剂脱水塔的模拟,为溶剂脱水塔的优化调整提供了基础。同时,分析主要参数之间的相关性,以及对各塔板成分板效率的影响,结果表明:塔负荷与塔压降之间存在线性相关;塔压降对夹带剂醋酸正丙酯的板效率影响较大,对水、对二甲苯、醋酸和醋酸甲酯的影响很小。  相似文献   

19.
    
Dividing-wall columns (DWCs) are widely used in the separation of ternary mixtures, but rarely seen in the separation of petroleum fractions. This work develops two novel and energy-efficient designs of lubricant-type vacuum distillation process (LVDP) for the separation of hydroisomerization fractions (HIF) of a hydrocracking tail oil (HTO). First, the HTO hydroisomerization reaction is investigated in an experimental fixed-bed reactor to achieve the optimum liquid HIF by analyzing the impact of the operating conditions. A LVDP used for HIF separation is proposed and optimized. Subsequently, two thermal coupling intensified technologies, including side-stream (SC) and dividing-wall column (DWC), are combined with the LVDP to develop side-stream vacuum distillation process (SC-LVDP) and dividing-wall column vacuum distillation process (DWC-LVDP). The performance of LVDP, SC-LVDP, and DWC-LVDP are evaluated in terms of energy consumption, capital cost, total annual cost, product yields, and stripping steam consumption. The results demonstrates that the intensified processes, SC-LVDP and DWC-LVDP significantly decreases the energy consumption and capital cost compared with LVDP. DWC-LVDP further decreases in capital cost due to the removal of the side stripper and narrows the overlap between the third lube oils and fourth lube oils. This study attempts to combine DWC structure into the separation of petroleum fractions, and the proposed approach and the results presented provide an incentive for the industrial implementation of high-quality utilization of HTO through intensified LVDP.  相似文献   

20.
In this work, a systematic framework is introduced to synthesize the optimal separation process of azeotropic mixtures. The proposed framework, which can handle an arbitrary number of components, consists of two main steps: a system analysis and a state‐space superstructure algorithm. The system analysis is composed of some equation‐oriented algorithms to supply basic information for the superstructure, including structure of the composition space, existence of unchangeable points and candidate operations. It is shown that the proposed superstructure featuring multistream mixing is superior to previous ones because it significantly expands the feasible area. Moreover, detailed design parameters such as number of stages and reflux ratio are derived. Additionally, flowsheet feasibility test rules are constructed to facilitate the analysis of the process, and are able to be used as heuristic methods to guide the design of ternary or quaternary systems. Three industrial cases are presented to illustrate the proposed framework. © 2011 American Institute of Chemical Engineers AIChE J, 2012  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号