首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The paper discusses the pitting corrosion behavior of AISI (American iron and steel institute) 316L stainless steel in aerated chloride solutions (0.1–2 M NaCl) at 25, 50 and 80 °C using potentiodynamic polarization technique. A comparison is made with CO2-saturated chloride solutions. The results have revealed that pitting potential decreased in a logarithmic relationship with the chloride concentration, and decreased linearly with temperature. The influence of CO2 on the chloride pitting of AISI 316L stainless steel is quite complex and found to be dependent on chloride concentration and test temperature. At 25 °C the presence of CO2 appears to have insignificant effect on Ep irrespective of chloride concentration. As the temperature is raised to 50 or 80 °C the additions of CO2 has caused marked negative shifts in pitting potential. The detrimental effect of CO2 increases with NaCl concentration and temperature. The results indicate that pitting potential (Ep) is influenced by a synergy between chloride, CO2 and temperature, and that this synergy depends on the chloride concentration and test temperature.  相似文献   

2.
Low-temperature carburizing below 773 K of austenite stainless steel can produce expanded austenite, known as S-phase, where surface hardness is improved while corrosion resistance is retained. Plasma-sprayed austenitic AISI 316L stainless steel coatings were carburized at low temperatures to enhance wear resistance. Because the sprayed AISI 316L coatings include oxide layers synthesized in the air during the plasma spraying process, the oxide layers may restrict carbon diffusion. We found that the carbon content of the sprayed AISI 316L coatings by low-temperature carburizing was less than that of the AISI 316L steel plates; however, there was little difference in the thickness of the carburized layers. The Vickers hardness of the carburized AISI 316L spray coating was above 1000 HV and the amount of specific wear by dry sliding wear was improved by two orders of magnitude. We conclude that low-temperature plasma carburizing enabling the sprayed coatings to enhance the wear resistance to the level of carburized AISI 316L stainless steel plates. As for corrosion resistance in a 3.5 mass% NaCl solution, the carburized AISI 316L spray coating was slightly inferior to the as-sprayed AISI 316L coating.  相似文献   

3.
This paper describes the use of a material testing system (MTS) and a compressive split-Hopkinson bar to investigate the impact behaviour of sintered 316L stainless steel at strain rates ranging from 10 3 s 1 to 7.5 × 103 s 1. It is found that the flow stress–strain response of the sintered 316L stainless steel depends strongly on the applied strain rate. The rate of work hardening and the strain rate sensitivity change significantly as the strain rate increases. The flow behaviour of the sintered 316L stainless steel can be accurately predicted using a constitutive law based on Gurson's yield criterion and the flow rule of Khan, Huang and Liang (KHL). Microstructural observations reveal that the degree of localized grain deformation increases at higher strain rates. However, the pore density and the grain size vary as a reversible function of the strain rate. Impacts at strain rates higher than 5.6 × 103 s 1 are found to induce adiabatic shear bands in the specimens. These specimens subsequently fail as a result of crack propagation along the dominant band. The fracture surfaces of the failed specimens are characterized by dimple-like structures, which are indicative of ductile failure. The depth and the density of these dimples are found to decrease with increasing strain rate. This observation indicates a reduction in the fracture resistance and is consistent with the observed macroscopic flow stress–strain response.  相似文献   

4.
Low magnetic permeability is an important criterion in selection of the material of construction of beam pipes and vacuum chambers of electron accelerators for safeguarding against distortion of the magnetic field. In the modified design of new 20 MeV/30 mA Injector Microtron for the existing synchrotron radiation sources Indus-1 and Indus-2, AISI 316 LN stainless steel has been identified as the material of construction of its vacuum chamber. Welding of AISI 316LN stainless steel with conventional filler alloys like ER316L and ER317L of AWS A5.9 produces duplex weld metal with 3–8% ferro-magnetic delta ferrite to avoid solidification cracking. The results of the study has demonstrated that GTAW of AISI 316LN SS with high Mn adaptation of W 18 16 5 N L filler produced a crack free non-magnetic weld with acceptable mechanical properties. Moreover, AISI 316LN stainless steel is not required to be solution annealed after the final forming operation for obtaining a low magnetic permeability, thereby avoiding solution annealing of large vacuum chamber in vacuum/controlled atmosphere furnace and associated problems of distortion. Besides Injector Microtron, the study also provides useful input for design of future indigenous accelerators with vacuum chambers of austenitic stainless steel.  相似文献   

5.
The use of austenitic stainless steel type AISI 317L has increased in the last years, in substitution to AISI 316L and other austenitic grades. The higher Mo content (3.0 wt.%. at least) gives higher corrosion resistance to AISI 317L. However, some concern arises when this material is selected to high temperature process services in refineries. Microstructural changes such as chromium carbide precipitation and sigma phase formation may occur in prolonged exposure above 450 °C. In this work, the microstructure evolution of AISI 317L steel during aging at 550 °C was analyzed. Thermodynamic calculations with Thermocalc® and detailed microstructural analysis were performed in steel plate base metal and in weld metal produced by GTAW process. The aging for 200, 300 and 400 h promoted gradual embrittlement and deterioration of corrosion resistance of both weld and base metal. The results show that the selection of AISI 317L steel to services where temperatures can reach 550 °C is not recommended.  相似文献   

6.
The present work investigates the effect of second phase dispersoid addition and sintering temperature on the corrosion behavior of austenitic (316L) stainless steels. Yttrium aluminum garnet (YAG) was added as second phase to the austenitic stainless steels in varying amounts (1, 2.5 and 7.5 wt.%), and the compacts were sintered at 1200 and 1400 °C corresponding to solid-state and supersolidus sintering, respectively. The sintered samples were characterized for their corrosion resistance in 0.1N H2SO4 using potentiodynamic polarization. It is shown that YAG addition does not appreciably increase corrosion rate of 316L compacts. However, as compared to solid-state sintering, supersolidus sintering resulted in superior corrosion resistance. The electrochemical behavior of the 316L–YAG composites with sintering temperature is correlated to the densification response and microstructure.  相似文献   

7.
The effect of postweld heat treatment (PWHT) on the microstructure and mechanical properties of ITER-grade 316LN austenitic stainless steel joints with ER316LMn filler material was investigated. PWHT aging was performed for 1 h at four different temperatures of 600 °C, 760 °C, 870 °C and 920 °C, respectively. The microstructure revealed the sigma phase precipitation occurred in the weld metals heat-treated at the temperature of 870 °C and 920 °C. The PWHT temperatures have the less effect on the tensile strength, and the maximum tensile strength of the joints is about 630 MPa, reaching the 95% of the base metal, whereas the elongation is enhanced with the rise of PWHT temperatures. Meanwhile, the sigma phase precipitation in the weld metals reduces the impact toughness.  相似文献   

8.
316L stainless steel composites with various weight fractions of TiC particles were prepared using warm compaction and microwave sintering. Abrasion resistance measurements were used to study the abrasive behaviors of TiC-316L stainless steel composites. The effects of TiC content and preparation methods on the microstructure and mechanical properties of 316L stainless steel composites have been investigated. The results showed that the sample prepared by warm compaction and microwave sintering exhibited significantly superior densification, higher hardness, and better abrasion resistance when compared with conventionally processed counterpart. TiC particles reinforcement improved the abrasion resistance of 316L stainless steel, and the abrasion resistance of the composites was considerably better than that of the 316L stainless steel. The volume loss initially decreases with increasing TiC content up to 5 wt.%, it then slightly increases as increase the TiC particles content to 10 and 15 wt.%. In this present abrasion tests, the composites using 5 wt.% TiC addition offers a high abrasion resistance.  相似文献   

9.
Stainless steel (316) foams of varying porosities have been made through powder metallurgy route using NH4HCO3 as a space holder. Green compacts of stainless steel powder with NH4HCO3 were sintered at two different temperatures: 1100 °C and 1200 °C. At higher sintering temperatures, neighboring stainless steel powders fused together to form polycrystalline grain structure with iron–chromium intermetallic phases segregated along the grain boundaries. Whereas, the fusion of neighboring stainless steel powders was limited around the particle–particle contact only when the green compacts were sintered at 1100 °C, which resulted in a larger amount of microporosities in the cell wall. These foams exhibited strain hardening behavior in the plateau region under compressive loading. The yield stress and the flow stress (at lower strain levels) of foams, sintered at 1100 °C were higher. But, the reverse is true for the flow stress at higher strain levels. The exponents and the coefficients of the power law relationships varied with sintering temperature and strain levels.  相似文献   

10.
A new family of 21Cr–2 Ni–1.0Mo–0.2 N–xCu (x = 0.5, 1.0, 1.5) economical duplex stainless steels have been developed by examining the effect of Cu on the microstructure and properties of solution-treated specimens. The results have shown that these alloys have a balanced ferrite–austenite duplex structure. The ferrite content increases with the solution treatment temperature, but decreases with an increase in Cu. Some precipitates such as sigma phase, ε-Cu and Cr2N were found when solution-treated at 780 °C for 30 min. The yield strength, tensile strength and fracture elongation values of experimental alloys solution-treated at 1020 °C for 30 min were about 540 MPa, 1000 MPa, and 35%, respectively. The pitting corrosion potentials of the solution-treated alloys were all above 500 mV in 1 mol/L NaCl solution at room temperature and the pitting corrosions always occur in ferrite phase. The mechanical properties and corrosion resistance of the designed alloys with lower production cost are better than those of AISI 316L austenitic stainless steel.  相似文献   

11.
This study discusses manufacturing of metallic biomaterials by means of powder metallurgy with consideration for their unquestionable advantages, i.e. opportunities of obtaining materials with controllable porosity. The paper focuses on properties of 316L stainless steel obtained using the method of powder metallurgy with respect to compacting pressure and sintering atmosphere. All the specimens were compacted at 700, 400 and 225 MPa, and sintered at 1250 °C. In order to analyze the sintering atmosphere, three different media were used: dissociated ammonia, hydrogen and vacuum. The study covered sintering density, porosity, microstructure analysis and corrosion resistance. The proposed method of powder metallurgy allowed for obtaining materials with predictable size and distribution of pores, depending on the parameters of sinter preparation (compaction force, sinter atmosphere). High corrosion resistance of the materials (sintering in the atmosphere of hydrogen and in vacuum) and high porosity in the sinters studied offer opportunities for using them for medical purposes.  相似文献   

12.
The design and fabrication of macroporous hydroxyapatite scaffolds, which could overcome current bone tissue engineering limitations, have been considered in recent years. In the current study, controlled unidirectional freeze-casting at different cooling rates was investigated. In the first step, different slurries with initial hydroxyapatite concentrations of 7–37.5 vol.% were prepared. In the next step, different cooling rates from 2 to 14 °C/min were applied to synthesize the porous scaffold. Additionally, a sintering temperature of 1350 °C was chosen as an optimum temperature. Finally, the phase composition (by XRD), microstructure (by SEM), mechanical characteristics, and the porosity of sintered samples were assessed. The porosity of the sintered samples was in a range of 45–87% and the compressive strengths varied from 0.4 MPa to 60 MPa. The mechanical strength of the scaffolds increased as a function of initial concentration, cooling rate, and sintering temperature. With regards to mechanical strength and pore size, the samples with the initial concentration and the cooling rate of 15 vol.% and 5 °C/min, respectively, showed better results.  相似文献   

13.
In this study, static strain ageing behavior of commercially available and solution heat treated duplex stainless steel was investigated and the effect of static strain ageing on the mechanical properties was also determined in detail. Some of as-received duplex stainless steel test specimens were pre-strained in tension by 5% and then aged at 100 °C, 200 °C, 300 °C, 400 °C, 500 °C and 600 °C for 30 min in furnace. Some of duplex stainless steel test specimens were solution heat treated at 1050 °C for 30 min, water quenched and then pre-strained for 5% in tension shortly after the solution heat treatment.In order to identify the effect of static strain ageing on the mechanical properties, the tensile strength, the change in the strength due to ageing (ΔY), elongation fracture and hardness were determined. The test results showed that the mechanical properties were affected by static strain ageing mechanism which was applied at different temperatures for same time interval.  相似文献   

14.
Martensite treatment is one of the known thermo-mechanical processes that can be used for the grain refinement of metastable austenitic stainless steels. In this work, the martensite to austenite reversion behavior as well as its effect on the processing of nanocrystalline structure in an as-cast AISI 201L austenitic stainless steel was investigated. The as-cast specimens were first homogenized and then hot forged in order to prepare a suitable microstructure for the subsequent martensite treatment. The cold rolling was carried out to various reductions between 10% and 95% followed by annealing at temperature range of 750–900 °C for different times of 15–1800 s. The microstructure characterization was performed using optical and scanning electron microscopies, X-ray diffraction and Feritscope. Hardness measurements were also used for evaluating the mechanical properties of the experimental material. The results indicated that the specimen which was reversion-annealed at 850 °C for 30 s exhibited the smallest average austenite grain size of 65 nm with more than 86% austenite.  相似文献   

15.
The wear behaviour of plasma sprayed coating and hard chrome plating on AISI 304 austenitic stainless steel substrate is experimentally investigated in unlubricated conditions. Experiments were conducted at different temperatures (room temp, 100 °C, 200 °C and 300 °C) with 50 N load and 1 m/s sliding velocity. Wear tests were carried out by dry sliding contact of EN-24 medium carbon steel pin as counterpart on a pin-on-disc wear testing machine. In both coatings, specimens were characterised by hardness, microstructure, coating density and sliding wear resistance. Wear studies showed that the hard chromium coating exhibited improved tribological performance than that of the plasma sprayed WC–Co coating. X-ray diffraction analysis (XRD) of the coatings showed that the better wear resistance at high temperature has been attributed to the formation of a protective oxide layer at the surface during sliding. The wear mechanisms were investigated through scanning electron microscopy (SEM) and XRD. It was observed that the chromium coating provided higher hardness, good adhesion with the substrate and nearly five times the wear resistance than that obtained by uncoated AISI 304 austenitic stainless steel.  相似文献   

16.
Duplex austenite–ferrite stainless steels were prepared from the premixes of 316L and 434L stainless steel atomized powders. Pronounced densification was observed after 1350°C sintering in hydrogen. 316L-60w/o 434L steel composition exhibited maximum transverse rupture strength, while 40 and 60w/o 434L containing compositions showed total immunity in 1N H2SO4 even after a exposure time of 360 h. Anodic polarization curves also suggest high-corrosion resistance of those two compositions. Magnetic coercivity decreased with increase in sintering temperature while magnetic saturation follows the reverse trend. Wear resistance of the duplex stainless steels under sliding condition was in between the straight steels.  相似文献   

17.
Fe-based alloys have been extensively evaluated and considered as outstanding metallic interconnect materials for fuel cell. High-energy micro-arc alloying technique has been determined to be a feasible method of producing a consistent and dense FeAl intermetallic coating on 316 stainless steel substrate. The coating had an average thickness of about 50 μm and grain size was significantly refined. When exposed at 800 °C, 900 °C and 1000 °C in air after 100 h, FeAl coating on 316 SS substrate exhibited better high temperature oxidation resistance than electrode materials due to the conversion of non-protective Fe-rich scale into protective Al-rich one. FeAl intermetallic coating deposited by HEMAA will be available as interconnects for SOFC at very low costs.  相似文献   

18.
In this paper, chemical composition uniformity in amorphous/nanocrystallization medical-grade stainless steel (ASTM ID: F2581) sintered with a Mn–Si additive was studied via scanning electron microscopy, energy dispersive X-ray spectroscopy, and transmission electron microscopy. The results show that as a result of sintering at 1000 °C, no dissociation of Mn–Si additive particles embedded in the stainless steel matrix occurs. In contrast, sintering at 1050 °C develops a relatively homogeneous microstructure from the chemical composition viewpoint. The aforementioned phenomena are explained by liquation of the Mn–Si eutectic additive, thereby wetting of the main powder particles, penetrating into the particle contacts and pore zones via capillary forces, and providing a path of high diffusivity.  相似文献   

19.
The differences in physical and metallurgical properties of stainless steels and magnesium alloys make them difficult to join using conventional fusion welding processes. Therefore, the diffusion brazing of 316L steel to magnesium alloy (AZ31) was performed using a double stage bonding process. To join these dissimilar alloys, the solid-state diffusion bonding of 316L steel to a Ni interlayer was carried out at 900 °C followed by diffusion brazing to AZ31 at 510 °C. Metallographic and compositional analyses show that a metallurgical bond was achieved with a shear strength of 54 MPa. However, during the diffusion brazing stage B2 intermetallic compounds form within the joint and these intermetallics are pushed ahead of the solid/liquid interface during isothermal solidification of the joint. These intermetallics had a detrimental effect on joint strengths when the joint was held at the diffusion brazing temperature for longer than 20 min.  相似文献   

20.
Entangled steel wire (Q195F) with total porosity of 36.3 ± 1.3 to 61.8 ± 2.4% and pore sizes of 15–825 µm have been investigated in terms of the porous morphologies, impact deformation and failure behavior. The results reveal that the impact toughness increases with the decrease of the porosity. The sintered entangled steel wire materials with 61.8 ± 2.4% porosity exhibit an average of 11.8 J/cm2 impact toughness. With 36.3 ± 1.3% porosity, the sintered materials have an average of 45.5 J/cm2 impact toughness. Impact absorbing energy and impact toughness have been obtained by Charpy impact testing. Essential impact deformation and failure mechanisms such as pore edges (i.e. fibers) bending, bulking, rotating, yielding, densification and fracture, as well as break (or avulsion) of sintering points in the steel wire framework contribute to the excellent energy-absorbing characteristics under impact loading condition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号