首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
为研究冻融(freeze-thaw,F-T)循环和热冲击(thermal-shock,T-S)循环对红砂岩动态力学性能的影响。利用直径50 mm的分离式Hopkinson压杆试验装置,对长径比为0.5的红砂岩试件开展F-T循环和T-S循环后的冲击压缩试验,对比分析了F-T循环和T-S循环次数对红砂岩动态力学参数和微观结构的影响。试验结果表明:红砂岩的动态应力-应变曲线可分为弹性、塑性和破坏阶段;其纵波波速、干密度、动态峰值应力、弹性模量、平均破碎块度均随循环次数的增加逐渐下降,而孔隙率、峰值应变、吸收能、比能量吸收值、质量分形维数则逐渐增大;通过对比岩石微观形貌特征发现,相同循环次数条件下,T-S循环对红砂岩内部的损伤程度较F-T循环更加明显;基于黏弹性朱-王-唐模型,建立了能够考虑F-T/T-S循环损伤的红砂岩动态本构模型;通过对比模型和试验得到的动态应力-应变曲线,验证了模型的准确性和适用性,该模型能够较好地反映冲击荷载作用下F-T/T-S循环后红砂岩的动态强度和变形特性。  相似文献   

2.
利用分离式Hopkinson压杆试验装置,进行了冻结黏土在单轴与主动围压两种状态下的动态冲击压缩试验,对比分析了单轴与主动围压状态下冻结黏土的动态应力-应变曲线、动态抗压强度和破坏模式。研究结果表明:单轴状态下,温度为-15℃时,动态应力-应变曲线可分为弹性阶段、塑性阶段和破坏阶段;主动围压状态下,-5℃和-15℃的动态应力-应变曲线可分为弹性阶段、塑性阶段和破坏阶段。在相同应变率和冻结温度的条件下,主动围压状态下冻结黏土的动态抗压强度均高于无围压状态,动态抗压强度随着主动围压的增加而增大;当冻结温度和围压相同的条件下,动态抗压强度随应变率的提高而增大;单轴状态下,温度为-5℃时,冻结黏土呈塑性破坏,温度为-15℃时,冻结黏土呈脆性破坏。  相似文献   

3.
为研究纤维高强混凝土材料在冲击荷载下的动态压缩性能,采用大尺寸φ75mm Hopkinson压杆,对三种纤维含量的钢纤维高强混凝土、PVA纤维高强混凝土试件进行了三种应变率范围的冲击压缩试验,得到了它们在较高应变率范围内的动态应力-应变关系。试验表明纤维高强混凝土材料为应变率敏感性材料,在较高应变率范围内纤维高强混凝土材料的动态应力-应变关系是与应变率相关的。纤维高强混凝土材料的破坏应力和破坏应变随应变率的增大而增大。钢纤维和PVA纤维对混凝土耗能能力的改善和提高表现在材料达到峰值应力后开始破坏的过程中。同时也对两种纤维高强混凝土材料的纤维增韧特性及耗能机理也进行了分析和探讨。  相似文献   

4.
基于直径50 mm的Hopkinson压杆装置,从宏观与微观两方面探究含水红砂岩在应力波作用下的力学特性与损伤演化机理,并将弹性模量定义的含水损伤与微元破坏数量定义的荷载损伤视为宏观损伤与微观损伤,基于Weibull理论与Drucker-Prager准则,推导得到红砂岩在含水率与应变率耦合作用下的复合损伤变量与动态损伤本构方程。研究表明,岩石损伤在一定范围内随含水率的增加而逐渐扩大,随着试样饱和,含水损伤趋于稳定。复合损伤变量与荷载损伤在应变率的作用下变化趋势近似,可分为初始阶段、低速发展阶段与快速发展阶段,代表了岩石在爆破冲击作用下的损伤演化过程,与含水红砂岩动态压缩破坏过程中应力-应变曲线的各个阶段相对应。将理论应力-应变曲线与实测应力-应变曲线进行对比,对建立的动态损伤本构模型准确性进行验证,发现该模型与含水红砂岩在动态压缩过程中的各个阶段拟合度较好,证明了该模型的准确性。  相似文献   

5.
利用分离式霍普金森压杆(SHPB)试验系统,对系列波阻抗的模型材料进行不同应变率下的冲击压缩试验。试验结果表明:岩石在冲击荷载下的应力波传播特征、动态应力应变关系以及破碎块度分形特征同时受波阻抗、应变率和冲击速度的影响。波阻抗相同时,反射波和透射波信号幅值均随冲击速度增大呈线性增大,同时应变率效应明显,随着应变率的增大:峰值应力呈线性增大,动态弹性模量增大,应变软化阶段延长;破碎程度增大,破碎块度分形维数呈线性增大。应变率相同时,随着波阻抗的减小:反射波幅值增大、透射波幅值减小;峰值应力减小,应变软化阶段延长,塑性段趋于明显,且有塑性流动现象出现;破碎程度增大,破碎块度分形维数增大。同时随着波阻抗减小,应变率增大对动态抗压强度的增大以及对破碎程度的加剧效果减弱,应变率效应减弱,逐渐趋于不明显。  相似文献   

6.
煤矿巷道围岩在采掘过程中受多种动载作用,为了研究动载对围岩破坏变形的影响,通过直径50 mm分离式Hopkinson试验装置开展不同冲击气压下煤矿常见泥岩在冲击荷载作用下的动态力学特性和破裂破碎特征试验,研究了不同冲击气压状态下试件应力应变特征、破坏形态和试件动态强度随应变率增长规律,分析了试验过程中应力波传播与试件裂纹扩展的关系。结果表明:在设定的试验条件下,泥岩试件的加载率、应变率和峰值应变均表现出随冲击气压的增大而增大;试件的动态单轴抗压强度随着应变率的增加呈现指数型增长,表现出强应变率效应;试件在反射应力波与透射应力波共同作用下,产生环向拉裂破坏和轴向劈裂破坏。  相似文献   

7.
为研究围压状态下水泥粉质黏土的冲击压缩特性,进行了不同围压和不同应变率条件下水泥粉质黏土的霍普金森压杆(SHPB)试验,分析了围压和应变率对水泥粉质黏土动态应力-应变曲线、冲击压缩强度以及破坏形态的影响。试验结果表明:围压和单轴状态下的水泥粉质黏土动态应力-应变曲线均经历弹性变形阶段、塑性变形阶段和破坏阶段,但是两种状态下水泥粉质黏土试样的破坏形态不同,单轴条件下水泥粉质黏土试样的破坏程度随应变率增加而逐渐变大,围压作用下水泥粉质黏土在冲击试验后保持较好的整体性。围压和应变率共同影响水泥粉质黏土的冲击压缩强度:相同应变率条件下,水泥粉质黏土冲击压缩强度随围压的增加而增大;相同围压条件下,水泥粉质黏土峰值应力和峰值应变均随应变率的增加而增大,表现出明显的应变率效应。  相似文献   

8.
用高温加热系统对C30、C50两种强度等级混凝土在不同温度条件下进行均匀加热,经自然冷却后用Φ75mm SHPB(Split-Hopkinson Press Bar)实验装置、超声波测量技术及试验压力机对高温前后混凝土试件进行动态冲击与静态抗压试验。结果表明,随温度升高纵波波速、弹性模量及静态抗压强度均出现不同程度减小,总体趋势一致;损伤随温度升高不断增大,在温度400℃、700℃处为明显变化转折点;经不同高温冷却后,混凝土动态破坏强度不断降低、峰值应变不断增大、应力-应变曲线趋平缓,出现塑性流动现象且随温度升高愈加明显。  相似文献   

9.
为研究岩石在中低速冲击下的动力特性,利用MTS和落锤冲击试验系统进行了红砂岩准静态和动态单轴压缩试验,获得了10-2-101.7 s-1应变率范围砂岩全应力-应变曲线。结果表明,中低应变率加载条件下,砂岩经历典型压密、弹性变形、非稳定裂纹发展至脆性破裂后阶段。随着加载应变率的提高,砂岩峰值应力及其对应应变、残余应变均逐步增加,破坏模式则由X状共轭剪切破坏转变为劈裂破坏;动态强度增长遵循热活化和宏观黏性机制联合作用规律;中低应变率下岩石的吸收总能量和弹性应变能随变形演化规律基本一致,且弹性应变能和较耗散应变能的应变率效应更为显著。  相似文献   

10.
为探究冲击荷载作用下岩石破碎分形特征,选取花岗岩和砂岩开展分离式霍普金森压杆(SHPB)岩石动力学试验,得到了不同应变率下岩石的应力-应变曲线、破碎特性、强度参数和能量参数;利用标准筛对破碎后的岩块进行筛分,获取了岩石破碎块度分布曲线,并基于碎块粒径分布的质量分形模型计算出分形维数D;最后分析了分形维数与加载参数、破碎特性和耗能特性之间的关系。结果表明,岩石在冲击荷载作用下的破碎块度分布符合分形规律;动态抗压强度随应变率增大而增大,两者满足乘幂函数关系;加载过程中岩石应变率越大,岩石破碎程度越深,分形维数越大;分形维数与岩石破碎耗能密度之间满足乘幂函数关系。采用分形维数可实现对岩石在冲击荷载作用下的破碎特性、力学特性和破碎耗能特性的定量研究。  相似文献   

11.
为了研究岩-煤-岩组合体动态力学性质,利用直径为75 mm的分离式霍普金森压杆(SHPB)在5种不同应变率下对组合体试件进行单轴动态冲击压缩试验。研究结果表明:气压与子弹速度之间、冲击速度与应变率之间、应变率与动态弹性模量之间、应变率与动态抗压强度之间、应变率与分维数值之间都近似呈线性关系;σ-ε曲线在近似直线上升到峰值应力的75%左右时,随着应力的增加,曲线斜率逐渐降低,直至达到应力峰值,试件破碎后,呈现跳崖式下降现象;岩-煤-岩组合体在应变率较低时沿着加载方向轴向劈裂破坏,但伴随着应变率的升高,岩块分布也逐渐呈现细粒化,破碎程度也随之增强,块度分维数值也呈线性升高。  相似文献   

12.
利用SHPB试验设备,研究花岗岩在不同冲击气体压力下的压缩力学性能,讨论岩石类材料的应力-应变特性和破坏过程。结果表明,花岗岩的平均应变率与冲击气体压力有明显相关性,在不同冲击压力下,应变率时间历程曲线明显不同;岩石的应力-应变曲线可分成初始压密、稳定变形、非线性弹性与破坏4个阶段,且冲击气压存在一个使岩石破碎效果明显的合理值;其破坏形式大多以沿轴向的劈裂破坏为主,但在较高的冲击气压作用下,岩石则呈压碎破坏形式。  相似文献   

13.
为探究不同驱动气压(0.3~0.5 MPa)和试样长度(15~50 mm)下煤岩能量演化及分形特征,利用Φ50 mm分离式霍普金森压杆(split Hopkinson pressure bar,SHPB)系统进行了动态压缩试验,明确了两种方式下能量演化参数随应变率的变化规律,基于分形理论探讨了破碎试样的分形特征,并揭示了不同应变率下煤岩破碎与能量演化的内在联系。结果表明:应变率随驱动气压升高呈线性增加,随试样长度增加呈幂函数降低;不同驱动气压和试样长度下的破碎耗能和破碎耗能密度随应变率升高分别呈指数和线性形式增加,且推断存在某一应变率,使两种方式破碎耗能密度的率敏感性趋于一致;气压改变和试样长度改变下的平均粒径随应变率升高均呈幂函数形式降低,而分形维数分别呈线性和指数形式增加;试验过程中随着应变率增加,试样破碎程度加剧,分形维数增大,且作用方式作为影响分形维数的重要因素,对结果起到了关键作用。研究结果可为采场合理布置施工参数提供一定参照。  相似文献   

14.
为研究掺砂量(与干土的质量比)对水泥粉质黏土冲击压缩强度及能量吸收特征的影响,采用Φ 50 mm分离式Hopkinson压杆(Split Hopkinson pressure bar,SHPB)试验装置对不同掺砂量的水泥粉质黏土进行了0.4 MPa冲击气压下的冲击压缩试验。结果表明:普通水泥粉质黏土(未掺砂)动态应力-应变曲线大致分为弹性阶段、屈服硬化阶段及破坏阶段,而随着掺砂量的逐渐增加,水泥砂浆固化粉质黏土动态应力-应变曲线中屈服阶段愈加不明显,出现了理想的塑性阶段;水泥砂浆固化粉质黏土的冲击压缩强度随掺砂量的增大而先增大后减小,在掺砂量为10%时达到最大平均动强度9.56 MPa,较普通水泥土强度提高9.79%;水泥砂浆固化粉质黏土的吸收能随冲击压缩强度的增大而增大,两者具有较好的指数关系。  相似文献   

15.
为探究循环荷载下不同孔隙率红砂岩的动力特性和损伤规律,采用SHPB冲击实验系统,选取了2组不同孔隙率的红砂岩进行循环冲击实验,分析大孔隙率红砂岩的动力波形,本构曲线及损伤度,得到不同孔隙率红砂岩的变形模量、峰值应力、峰值应变及损伤度的变化规律。结果表明:不同孔隙率的红砂岩试件在循环荷载下的应力时程基本一致,随着循环次数的增加,岩石经历了孔隙闭合-裂隙开展-应力硬化-应变软化直至破坏的阶段,其变形模量和峰值应变呈现出先减小,再增大,再减小的趋势,峰值应力与速度呈正相关的关系。随着循环次数的递增,孔隙率大的岩石的峰值应力下降趋势大于孔隙率小的岩石,并且损伤累积使岩石在冲击破坏前表现出了较明显的塑性特征,不同孔隙率红砂岩的损伤度变化趋势基本是先增大后减小,孔隙率大的岩石累计损伤度大于孔隙率小的岩石,其损伤裂纹基本都是从透射杆端部开始,随着裂纹的产生扩展直至破坏。  相似文献   

16.
谢磊  李庆华  徐世烺 《工程力学》2021,38(12):158-171
利用直径80 mm分离式霍普金森压杆(SHPB)系统进行了超高韧性水泥基复合材料(ultra high toughness cementitious composites,UHTCC)在多次冲击压缩荷载下力学性能的研究,分析了试件的应力-应变曲线随冲击次数的演化规律, 并与其他纤维增强混凝土进行对比。试验结果表明:在多次冲击荷载作用下由于损伤的累积导致加载应变率随冲击次数增加而大致呈指数递增,UHTCC的峰值强度随应变率增大而近似线性递减,峰值应变和累积吸能值逐渐增加,单次吸能值随冲击次数的增加呈先增后减的变化趋势。通过对本构模型进行探讨后发现,热激活损伤演化(TADE)模型能较好地描述UHTCC在首次冲击下的力学响应,但无法反映其在多次冲击下力学性能的演化规律;基于Weibull分布的损伤演化模型能够较好地描述UHTCC在多次冲击下的累积损伤演化规律及应力-应变曲线,在经历3次冲击作用后根据损伤程度的计算可认为试样已完全破坏,但此时试样通过PVA纤维的桥连作用仍能保持为整体,具有良好的抗破碎性。  相似文献   

17.
为研究煤岩的动态破坏规律,利用Φ50 mm分离式霍普金森压杆(split Hopkinson pressure bar, SHPB)装置,开展了煤岩冲击破坏试验。基于零厚度的内聚力单元建立了煤岩有限离散元方法(finite discrete element method, FDEM),标定了模型参数;最后在LS-DYNA软件平台上模拟了SHPB冲击试验,讨论了FDEM模型在模拟动态破坏时的适用性,并对煤岩的破坏过程进行分析。研究表明:(1)煤岩动态抗压强度与应变率满足经验关系,当应变率为98.05 s-1、119.22 s-1和135.85 s-1时其动态强度因子(dynamic strength factor, DIF)分别为1.92、2.08和2.23;(2)冲击作用下煤岩的弹性变形阶段较短,塑性变形能力较强,动态弹性模量的应变率相关性不显著;(3) FDEM模型通过零厚度内聚力单元的失效能够模拟岩石类材料的脆性破坏,当网格尺寸合理时,由于惯性效应的存在,通过准静态试验标定的模型参数,也适用于冲击破坏的模拟;(4)冲...  相似文献   

18.
采用φ74 mm分离式霍普金森压杆(Split Hopkinson Pressure Bar,简称SHPB)试验装置对30块高温后的钢管活性粉末混凝土(Reactive Powder Concrete-Filled Steel Tube,简称钢管RPC)进行了不同应变率的冲击压缩试验,得到了高温后钢管RPC的动态应力-应变关系和破坏形态,提出了高温后钢管RPC动态峰值应力和峰值应变预估方法。结果表明,高温后钢管RPC具有明显的应变率效应,经历高温作用后的钢管RPC仍保持较高的强度,较好的延性和整体性。含钢率对钢管RPC动力性能有显著影响,初始弹性刚度和峰值应力随含钢率提高而明显增大。理论计算结果与试验结果吻合良好,能够较好预测高温后钢管RPC的动态峰值应力和峰值应变。  相似文献   

19.
为研究高地应力下爆破荷载和动态卸载效应对破岩效果和损伤破坏范围的影响,在理论上分析了在爆破荷载和动态卸载作用下裂隙区和弹性区岩石应力分布和破裂特征。基于断裂力学和可释放应变能的岩石损伤破坏准则计算了岩石破碎块度d和岩石损伤破坏范围Rd。计算结果表明,当初始地应力达到50 MPa以上,炮孔半径为42 mm,2号岩石改性铵油炸药耦合装药起爆后原岩中积聚的弹性应变能释放后可以达到裂隙区破碎能的16%以上。高地应力卸载后在爆腔腔壁将产生一个径向拉应力,在裂隙区边缘拉应力为2 MPa,最大拉伸位移为0.24 mm,在弹性区由于卸载径向拉伸应力的作用促使其聚积的应变能沿径向释放,使弹性区形成新的损伤破坏,损伤破坏区厚度为0.03 m。随着爆腔半径和裂隙区半径的增大,动态卸载释放的能量和损伤破坏区的厚度也将随之增大。  相似文献   

20.
为了研究晶质石墨矿石试样在冲击荷载作用下的破碎能耗特征,采用?50 mm的分离式霍普金森压杆(SHPB)试验装置,设置气压间隔为0.1 MPa, 0.2~0.6 MPa共5组冲击气压,进行不同加载速率条件下石墨矿石试样冲击压缩试验,并分析石墨矿石试样破碎能耗规律。试验结果表明:在冲击荷载作用下,石墨矿石试样的动态抗压强度与平均应变率具有较强的三阶多项式关系,且石墨矿石在冲击荷载作用下具有动态硬化作用,其动态抗压强度随着应变率的增大呈非线性增大,呈现明显的应变率效应;石墨矿石试样破碎耗能与入射能具有显著的对数关系,随着入射能增大,试样破碎耗能也随之增大,但其试样破碎耗能所占比例随应变率增大逐渐由0.38下降至0.11;随着平均应变率增大,石墨矿石试样破碎耗能密度呈非线性增长,具有较强的应变率效应;石墨矿石试样的破碎平均粒径与破碎耗能密度具有显著的三阶多项式相关关系,随着石墨矿石试样耗能密度增加,石墨矿石试样破碎程度加剧,可以采用石墨矿石试样破碎块度平均粒径实现对石墨矿石试样破碎程度进行定量描述。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号