首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this work, high‐speed thermography is shown to effectively capture quasi‐stationary temperature fields during the laser welding of steel plates. This capability is demonstrated for two cases, with one involving the addition of a ferritic‐bainitic filler wire, and the other involving the addition of a low‐transformation‐temperature (LTT) filler wire. The same welding parameters are used in each case, but the temperature fields differ, with the spacing between isotherms being greater in the case where the low‐transformation‐temperature filler material is added. This observation is consistent with the differences in the extent of the heat‐affected zone in each sample, and the shape of the weld pool ripples on the weld bead surfaces. The characterization of temperature fields in this way can greatly assist in the development of novel methods for reducing residual stresses, such as the application of low‐transformation‐temperature filler materials through partial‐metallurgical injection (PMI). This technique reduces or eliminates tensile residual stresses by controlling the temperature fields so that phase transformations take place at the optimum times, and success can only be guaranteed through precise knowledge of the temperature fields in the vicinity of the welding heat source in real time.  相似文献   

2.
ABSTRACT

Low transformation temperature (LTT) weld fillers can be used to replace tensile weld residual stresses with compressive ones and reduce the distortion of single-pass welds in austenitic plates. By contrast, weld fillers in multipass welds experience a number of thermal excursions, meaning that the benefit of the smart LTT fillers may not be realised. Here, neutron diffraction and the contour method are used to measure the residual stress in an eight pass groove weld of a 304?L stainless steel plate using the experimental LTT filler Camalloy 4. Our measurements show that the stress mitigating the effect of Camalloy 4 is indeed diminished during multipass welding. We propose a carefully selected elevated interpass hold temperature and demonstrate that this restores the LTT capability to successfully mitigate residual tensile stresses.

This paper is part of a thematic issue on Nuclear Materials.  相似文献   

3.
In the present paper constant (CA) and variable amplitude (VA) fatigue testing have been carried out on out-of plane gusset fillet welded high strength steel joints. The joints were welded with conventional weld filler material and martensitic low transformation temperature weld filler, LTT, in order to study the influence of the residual stress on the fatigue strength. Residual stress measurements were carried out close to the weld toe using X-ray diffraction technique in order to study the relaxation due to VA fatigue. The residual stress showed different level of relaxation depending on the VA spectrum loading used. The LTT joints show 40% increase in mean fatigue strength compared to the conventional joints in CA. The LTT joints show 12% increase in mean fatigue strength compared to the conventional joints. The LTT joints show 33% increase in mean fatigue strength in CA compared to VA testing. However, the improvement of the fatigue strength is less significant in variable amplitude testing mainly due to the relaxation of the compressive residual stresses.  相似文献   

4.
Low‐transformation‐temperature materials (LTT) are used as high‐alloy welding filler material for high‐strength steels in order to minimize the tensile stresses and resulting distortion of the component during the welding process. The increase in the volume of the structure produced during martensitic transformation is utilized in order to counteract the volume shrinkage due to the cooling process. As stated in the field of study various elements influence the starting temperature of the martensite transformation, the influence on the volume expansion during the martensite formation is unknown. The influence of alloying elements nickel and chromium on the conversion behavior of low‐transformation‐temperature materials is to be investigated in detail. In particular, the effect of the variation of the mentioned elements on the starting temperature of the martensitic phase transformation and the extent of the volume expansion associated with that is investigated. In addition, the change in the hardness of the different low‐transformation‐temperature alloys is recorded and compared.  相似文献   

5.
Low‐Transformation‐Temperature materials (LTT) were designed to reduce delay as well as residual tensile stress in welds on carbon‐manganese steels. Using the volume expansion effect during a martensitic transformation these materials counteract the volume shrinkage during cooling. While this positive effects on residual stress relief by Low‐Transformation‐Temperature‐alloys has been proven in various studies, these alloys have always been used in large volumes as additional filler material in electric arc welding processes. Modular heat fields initiated by an electron‐beam‐welding‐process offers the potential of a time‐activated initiation of compressive stresses triggered by phase transformation of Low‐Transformation‐Temperature‐alloys. Developing a technology able to reduce residual stress and thus the deformation of complex welded components is the aim. The first approach of Low‐Transformation‐Temperature‐material used in the electron beam process and its behaviour is presented here.  相似文献   

6.
The weld toe is one of the most probable fatigue crack initiation sites in welded components. In this paper, the relative influences of residual stresses and weld toe geometry on the fatigue life of cruciform welds was studied. Fatigue strength of cruciform welds produced using Low Transformation Temperature (LTT) filler material has been compared to that of welds produced with a conventional filler material. LTT welds had higher fatigue strength than conventional welds. A moderate decrease in residual stress of about 15% at the 300 MPa stress level had the same effect on fatigue strength as increasing the weld toe radius by approximately 85% from 1.4 mm to 2.6 mm. It was concluded that residual stress had a relatively larger influence than the weld toe geometry on fatigue strength.  相似文献   

7.
Abstract

The welding of dissimilar joints is very common in systems used in oil exploration and production in deep sea waters. Commonly involves welding of low carbon steel pipes with low alloy steel forgings both with inner Inconel clad. The forged steel part undergoes a process of buttering with Inconel or carbon steel electrode before the weld of the joint. The buttering process is followed by a process of residual stresses relief. The conventional way of reducing the level of residual stresses in welded joints is to apply post welding heat treatments. Depending on the size and complexity of the parts to be joined, this can become a serious problem. An alternative technique for reducing residual stresses is to use an electrode that during the cooling process undergoes a displacive transformation at a relatively low temperature so that the deformation resulting from the transformation compensates the contraction during the cooling process, and, although many papers have been published in this direction using Fe–Cr–Ni alloys, most of them report a loss of toughness in the weld metal. Maraging steel is a family of materials with Ms temperature below 200°C and even without the final heat treatment of aging has superior mechanical properties to low alloy steels used in forgings. In this work, forged piece of AISI 4130 was buttered with Maraging 350 weld consumable and subsequently welded to ASTM A36 steel using Inconel 625 filler metal. In addition, the dissimilar base metal plates were welded together using Maraging 350 steel weld consumable. The levels of residual stress, and the toughness and microstructures of heat affected zone and weld metal were investigated.  相似文献   

8.
《Composites Part A》2007,38(1):162-173
The mutual effect of the nature of the filler and the compatibilizer on the properties of a ternary blend based on polypropylene (PP) polyamide-6 (PA) and an inorganic phase is investigated. Low aspect ratio irregular shaped CaCO3 and high aspect ratio plate-like talc are selected as inorganic phases. The effect of different filler levels on the morphology of the weld line region and the region far from the weld line are studied while special attention is paid to both uncompatibilized and compatibilized PPPA blends with maleic anhydride grafted polypropylene (MA-g-PP). It is observed from scanning electron microscopy (SEM) studies that plate-like talc reduces the elongated domain size in the weld line region much more effectively than low aspect ratio CaCO3 for uncompatibilized filled blends. Although both filler are selectively wetted by the dispersed PA phase, the morphology homogenization in the weld line region is found to be related to the ability of the filler to reduce the elongated domain size by increasing the viscosity of dispersed phase rather than the shape of the filler. The selective wetting of talc particles by the PA phase seems to be beneficial in increasing weld line strength by increasing the viscosity of the PA dispersed phase with respect to filler content much faster than CaCO3. However, the additional compatibilization effect causes much finer, homogeneous spherical PA/ CaCO3 domains dispersed within the PP matrix compared to plate-like PA/talc domains, which are highly oriented at the weld line. For that reason, the shape of the filler is of predominant importance to achieve homogeneous morphology in the weld line region. Compared to uncompatibilized filled blends, low aspect ratio irregular shaped CaCO3 yields better weld line strength with respect to all filler levels. For compatibilized PPPA filled blends, the shape of the filler is of supreme significance in order to achieve better mechanical properties especially where weld line properties are concerned.  相似文献   

9.
This paper presents a sequentially coupled three-dimensional (3-D) thermal, metallurgical and mechanical finite element (FE) model to simulate welding residual stresses in high strength carbon steel butt weld considering solid-state phase transformation effects. The effects of phase transformation during welding on residual stress evolution are modeled by allowing for volumetric changes and the associated changes in yield stress due to austenitic and martensitic transformations. In the FE model, phase transformation plasticity is also taken into account. Moreover, preheat and inter-pass temperature are included in the modeling process. Based on the FE model, the effects of solid-state phase transformation on welding residual stresses are investigated. The results indicate the importance of incorporating solid-state phase transformation in the simulation of welding residual stresses in high strength carbon steel butt weld.  相似文献   

10.
A new welding electrode, low transformation temperature electrode (LTTE), was introduced in this paper. It was described in design principle, mechanics, chemical compositions of their deposited metal and manufacturing methods. It was proved that the best transformation starting temperature from austenite to martensite of the deposited metal of LTTE was at about 191℃ and it was obtained by adding alloying elements such as Cr, Ni, Mn and Mo. The microstructure of the weld metal of the LTTE was low carbon martensite and residual austenite. The compressive residual stress was induced around the weld of the LTTE and the -145 MPa in compression could be obtained in middle of weld metal. The fatigue tests showed that the fatigue strength of the longitudinal welded joints welded with the LTTE at 2×106 cycles was improved by 59% compared with that of the same type of welded joints welded with conventional E5015 and the fatigue life was increased by 47 times at 162 MPa. It is a very valuable method to improve th  相似文献   

11.
Subtle but well characterized structural phase transformations occur at low temperatures in some lanthanum cuprate superconductors. These transformations, which involve collective tilting of the CuO6 octahedra, have a strong influence on superconducting and normal state properties. Experiments suggest that for a given hole doping the following hierarchy exists for superconductivity in these materials: Tc(HTT)>Tc(LTO)>Tc(LTT), where HTT represents the untilted structure and LTO and LTT are the two limiting low temperature tilted structures. An additional very strong suppression of Tc, suggestive of a competing electronic groundstate, occurs in the LTT phase for a hole to Cu ratio of 1/8. Neither of these effects are understood at present. This paper reviews both the evidence upon which these conclusions are based and some outstanding unanswered questions.  相似文献   

12.
铁基形状记忆合金由于价格低廉、强度高、加工性能好、可焊接等优点引起广泛重视。机械合金化(MA)和粉末冶金(PM)作为制备材料的新工艺,可以用来制备性能优越的形状记忆合金。本文详述了机械合金化和粉末冶金工艺在制备Fe-Mn-Si基形状记忆合金过程中对合金相变、组织与性能的影响,以及此类合金在新领域的应用。最后提出了现阶段在研究MA/PM工艺制备Fe-Mn-Si基SMA中有关工艺参数、相变机制以及回复应力和低温应力松弛所存在的问题。  相似文献   

13.
铀铌合金作为一种重要的核工程材料,因其较高的密度、优异的耐蚀性能和良好的力学性能等特点,被广泛应用于核工业领域。铀铌合金受成分及热处理工艺影响显著,表现出复杂的相转变和组织结构特征,使得铀铌合金耐腐蚀性能及力学性能可在较大范围内获得调控。本文按照"成分/工艺-结构-性能"主线,综述了近年铀铌合金在结构、性能调控方面的研究进展,认为:低温时效机制和杂质控制技术仍是铀铌二元合金研究中需要重点关注的问题;高通量设计、制备及表征手段的出现,为未来铀铌多元合金结构及性能调控研究带来了新的机遇与挑战。  相似文献   

14.
Commercially pure titanium components in medical devices are commonly joined using pulsed laser welding because of the precision, low heat input and low thermal distortion it affords. Despite the importance of this technique in structural components, such as dental prosthesis, there is still a limited understanding of the factors which affect the weld metallurgy. In this study the effect of O, N and Fe on the weld metallurgy, as both external and bulk contaminants, is investigated. The results indicate that Fe has the most pronounced effect on the nature of the allotropic β–α phase transformation, suppressing the massive transformation and encouraging the formation of martensite. This finding is in contrast to the effects of O and N which are usually the subject of studies reported in the literature. Whilst O and N do cause more hardening than Fe, this seems to be mainly through more pronounced solid solution strengthening. The study also demonstrates the inadequacy of relying on ASTM grades to predict weld properties and the need to adequately characterise the base alloys.  相似文献   

15.
Abstract

Stress accumulation during cooling after single–pass butt welding is numerically studied for a pipe and a plate made of a microalloyed fine–grain C–Mn steel. The finite–element method is applied. Transformation plasticity is modelled by use of low yield stress values in the weld metal and in the heat affected zone during the final phase transformation. It is found that the stress changes induced in the pipe during the final phase transformation will partly remain at room temperature because of the low circumferential restraint during the final cooling. In the plate, however, the residual–stress field is governed mainly by the strong stress increase occurring after the final phase transformation. Stress changes induced in the plate before that event are thus hardly noticeable in the residual field.

MST/25  相似文献   

16.
Differential scanning calorimetry (DSC) is a well suited technique for studying phase transformation kinetics provided the transformation involves some kind of heat effect. The diffusional transformation in Fe-C alloys and low alloy steels upon cooling from the austenitic state involve both heat of transformation and changes in heat capacity. In principle, it can therefore be analysed using DSC techniques. Particular complications in the analysis of the heat effects occurring on this transformation are the strong temperature dependence of the heat capacity of the ferrite and the strong temperature dependence of the enthalpy of formation of ferrite from austenite. A simple mathematical method is presented, which allows for the non-linear temperature dependence of heat capacities and enthalpy of formation. As a consequence, the method can be used to analyse the simultaneous formation of pearlite. Using this method, the fractions of both pro-eutectoid ferrite and pearlite as a function of the temperature are determined from heat capacity measurements for several Fe-C alloys. Data for the enthalpy of formation of pearlite are presented. The method presented is generally applicable for analysing reactions or transformations occurring over a wide temperature interval where the heat effects are temperature dependent.  相似文献   

17.
Arc welding typically generates residual tensile stresses in welded joints, leading to deteriorated fatigue performance of these joints. Volume expansion of the weld metal at high temperatures followed by contraction during cooling induces a local tensile residual stress state. A new type of welding wire capable of inducing a local compressive residual stress state by means of controlled martensitic transformation at relatively low temperatures has been studied, and the effects of the transformation temperature and residual stresses on fatigue strength are discussed. In this study, several LTTW (Low Transformation‐Temperature Welding) wires have been developed and investigated to better characterize the effect of phase transformation on residual stress management in welded joints. Non‐load‐carrying cruciform fillet welded joints were prepared for measurement of residual stresses and fatigue testing. The measurement of the residual stresses of the three designed wires reveals a compressive residual stress near the weld toe. The fatigue properties of the new wires are enhanced compared to a commercially available wire.  相似文献   

18.
Cost reduction and weight saving are most important principles governing design and construction of aircrafts. Advanced alloys and thermo‐mechanical treatments as well as new and optimized production processes are being developed. For example, welding of fuselage components like stringers or clips made of Al alloys can have several advantages over riveting. Retention of optimum weld microstructure and properties as well as control of welding related residual stresses and distortion is essential. In the context of risk analysis and damage tolerance it will be of growing importance to study residual stress fields in weld configurations and their influence on fatigue crack propagation. In this paper, methods to evaluate residual stresses in turbine discs and laser welded Al joints are reviewed.  相似文献   

19.
钎料的性能很大程度上决定了钎焊接头的质量和钎料的应用范畴.银基钎料作为一类非常重要的硬钎焊材料,其填缝能力优异,强度与黄铜、低碳钢接近,可钎焊除铝、镁合金等轻金属之外的所有金属材料.因此,银基钎料广泛应用于航空航天、超硬工具等制造领域,并且受到国内外钎焊界学者们的高度关注.然而,银基钎料的发展及应用过程中仍存在以下问题:第一,钎料中贵金属银含量偏高(一般高于45%),导致钎料使用成本高;第二,银基钎料挤压、轧制、拉拔等加工过程中不可避免地存在夹杂物,影响钎料的使用性能和连接质量;第三,有益金属或合金调控钎料及其连接性能的机制较为复杂,尚未完全研究清楚;第四,传统制备银基钎料的方法产能低下;第五,银基钎料在制造业领域的应用研究尚未见系统报道.国内外对于银基钎料钎焊性能及工程应用方面的研究主要集中于:(1)开发多种节银降银钎料,主要是有益元素调控银基钎料连接性能方面的研究;(2)改进钎料的传统加工方法,提出新的制造方法,如粉末电磁压制成形、钎焊过程中原位合成、快速凝固、镀覆扩散组合等;(3)研究杂质元素(C、Ca、S、Al、Fe、Bi、Pb、O、N 等)的影响;(4)银基钎料形态创新研究,如三明治复合钎料(中间为铜合金、两边为银钎料)、箔带钎料、镀锡银钎料等;(5)工程应用研究,银基钎料在航空航天、汽车制造、电力能源等工业领域起着不可替代的作用,但目前国内外仍缺乏系统阐述该方面研究的报道.因此,本文对近20年国内外有关银基钎料的研究报道进行了评述,重点讨论了合金元素对银基钎料性能的影响.首先对银基钎料研究现状进行详述,总结了Cu、Zn、Sn、Ga、In、Ni、Mn、Cd、Li、Ce、La、P、Si、Pr在银基钎料中的优缺点,归纳了杂质元素C、S、O、N、Ca、Al、Fe、Pb、Bi的恶化作用.其次对银基钎料在航空航天、汽车制造、电力能源、超硬工具、家用电器、眼镜行业等制造业中的应用研究进行详细介绍.最后提出银基钎料研究和应用中的不足,为银基钎料的深入系统研究及相关技术发展提供理论指导.  相似文献   

20.
Laser beam welding is considered to be a suitable joining process for high speed, low distortion, and high quality fabrication of aircraft structures manufactured from aluminum alloys, which are mainly preferred due to their favourable properties, such as high strength to weight ratio, ease of forming and high thermal and electrical conductivity. However, the laser beam welding of 6000 series aluminum alloys may exhibit a tendency to solidification cracking, and porosity may be a major problem unless appropriate welding parameters and filler metal are employed.In this study, the microstructural aspects and mechanical properties of laser beam welded new generation aluminum alloy, namely 6056, developed especially for aircraft structures, are investigated. A continuous wave CO2 laser using AlSi12 filler wire was employed. A detailed microstructural examination of the weld region was carried out by Scanning Electron Microscopy (SEM). Standard tensile and microflat tensile specimens extracted from the welded plates were tested at room temperature for the determination of general and local mechanical properties of the welded joints. Extensive microhardness measurements were also conducted. Crack growth mechanisms of the joints produced were also determined by conducting fatigue tests under various stress ratios (i.e., 0.1 ≤ R ≤ 0.7).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号