首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
利用MELCOR程序对CPR1000全厂断电叠加蒸汽发生器(SG)安全阀误开启事故引发的严重事故进行建模与分析,初步实现了对CPR1000严重事故进程的仿真计算与模拟。文中重点分析了无轴封泄漏和辅助给水、有轴封泄漏和辅助给水、有轴封泄漏但无辅助给水3种不同假设条件下CPR1000全厂断电严重事故的响应进程和结果。计算结果显示,SG安全阀误开启对事故进程有重要影响。在无轴封泄漏和辅助给水的情况下,压力容器在9576 s失效;当存在辅助给水时,压力容器失效延后近30000 s;而当存在轴封泄漏时,压力容器失效延后50 s左右。结果证明了发生全场断电叠加SG安全阀误开启事故情况下辅助给水和轴封泄漏对事故起到有效缓解作用。  相似文献   

2.
以美国surry核电站为参考对象,采用最佳估算程序SCDAP/RELAP5/MOD3.4,建立了一个典型的三环路压水堆核电站严重事故计算模型,对全厂断电(SBO)事故的物理现象及堆芯熔化进程进行了详细分析,并研究了全厂断电事故发生后辅助给水(AFW)分别持续1800s和3600s对事故的缓解效果.计算结果显示,辅助给水能有效地延缓堆芯熔化进程,大大推迟反应堆压力容器的失效时间,为操纵员恢复交流电源以及实施其它缓解措施赢得更多的时间.  相似文献   

3.
全厂断电引发的严重事故若处置不当,可能发展为长期、高压的严重事故进程,此时堆芯冷却系统中的自然循环在导出部分堆芯余热的同时,也增加了蒸汽发生器(SG)传热管、稳压器波动管以及热管段出现蠕变失效的风险。本文基于两环路设计的秦山二期核电厂设计特点,结合蠕变失效风险模型,对全厂断电引发的严重事故后未能执行“严重事故管理导则中向蒸汽发生器注水(SAG-1)”时SG传热管的蠕变失效风险进行了研究,从而为全厂断电引发的严重事故的负面影响提供量化结果,为技术支持中心(TSC)最终决策提供参考依据。分析结果表明,全厂断电引发的严重事故后16 361 s可能出现蠕变失效;自事故后16 610 s,SG传热管出现蠕变失效的可能性均远低于稳压器波动管与热管段,秦山二期核电厂全厂断电引发的严重事故下因SG传热管蠕变失效而导致安全壳旁通的风险很小。  相似文献   

4.
辅助给水系统对缓解全厂断电事故能力研究   总被引:1,自引:1,他引:0  
以CPR1000核电站为研究对象,采用RELAP5/MOD3.2轻水堆瞬态分析程序,对系统进行合理简化并建模,模拟系统在全厂断电事故下的瞬态响应过程,研究全厂断电事故发生后辅助给水(AFW)的投入对缓解全厂断电事故的能力。计算结果表明:断电事故发生后,主给水丧失导致一回路压力和冷却剂平均温度在断电后6s达到峰值;辅助给水投入约200s后,一回路因热阱丧失而引起的温度和压力升高能有效地得到缓解,为交流电源的恢复及余热排出系统的投入赢得了更多的时间。  相似文献   

5.
秦山核电厂SGTR事故及其处置研究   总被引:2,自引:0,他引:2  
用RELAPS/MOD2程序和MARCH3程序对秦山核电厂多种假想SGTR事故及其所致严重事故进行了计算,分析了主要事故序列的事故进程,估算了严重事故下的熔堆时序,探讨了一些有效的事故处置措施及其干预效果。  相似文献   

6.
A coolant injection into the reactor vessel with depressurization of the reactor coolant system (RCS) has been evaluated as part of the evaluation for a strategy of the severe accident management guidance (SAMG). Two high pressure sequences of a small break loss of coolant accident (LOCA) without safety injection (SI) and a total loss of feedwater (LOFW) accident in Optimized Power Reactor (OPR)1000 have been analyzed by using the SCDAP/RELAP5 computer code. The SCDAP/RELAP5 results have shown that only one train operation of a high pressure safety injection at 30,000 s with indirect RCS depressurization by using one condenser dump valve (CDV) at 6  min after implementation of the SAMG prevents reactor vessel failure for the small break LOCA without SI. In this case, only one train operation of the low pressure safety injection (LPSI) without the high pressure safety injection (HPSI) does not prevent reactor vessel failure. Only one train operation of the HPSI at 20,208 s with direct RCS depressurization by using two SDS valves at 40 min after an initial opening of the safety relief valve (SRV) prevents reactor vessel failure for the total LOFW.  相似文献   

7.
CPR1000非能动应急给水系统瞬态特性分析   总被引:1,自引:1,他引:0  
利用RELAP5/MOD3.4程序对CPR1000压水堆在全厂断电事故下一回路主要参数的瞬态热工水力特性进行分析,验证CPR1000非能动应急给水系统(PEFWS)对事故的缓解能力。计算结果表明,CPR1000在发生全厂断电事故后,PEFWS完全可及时向蒸汽发生器补水,同时导出堆芯余热,保证反应堆处于安全状态,从而验证CPR1000PEFWS的设计成功。  相似文献   

8.
Containment depressurization has been implemented for many nuclear power plants (NPPs) to mitigate the risk of containment overpressurization induced by steam and gases released in LOCA accidents or generated in molten core concrete interaction (MCCI) during severe accidents. Two accident sequences of large break loss of coolant accident (LB-LOCA) and station blackout (SBO) are selected to evaluate the effectiveness of the containment venting strategy for a Chinese 1000 MWe NPP, including the containment pressure behaviors, which are analyzed with the integral safety analyses code for the selected sequences. Different open/close pressures for the venting system are also investigated to evaluate CsI mass fraction released to the environment for different cases with filtered venting or without filtered venting. The analytical results show that when the containment sprays can't be initiated, the depressurization strategy by using the Containment Filtered Venting System (CFVS) can prevent the containment failure and reduce the amount of CsI released to the environment, and if CFVS is closed at higher pressure, the operation interval is smaller and the radioactive released to the environment is less, and if CFVS open pressure is increased, the radioactive released to the environment can be delayed. Considering the risk of high pressure core melt sequence, RCS depressurization makes the CFVS to be initiated 7 h earlier than the base case to initiate the containment venting due to more coolant flowing into the containment.  相似文献   

9.
为满足核电厂全范围模拟机对严重事故过程仿真的需求,自主开发了严重事故仿真软件SimSA,能模拟从设计基准事故到严重事故的主要事故过程,并能准确给出相关进程的计算结果。SimSA包含3大主要模块:热工水力模块(Therm)、堆芯行为模块(Core)以及安全壳行为模块(Cont)。其中,Therm与Core两个模块的耦合过程中采用了SCDAP/RELAP5相似的基于过程机理的耦合方法。本文结合SimSA软件的具体情况介绍了这种耦合方法的实现过程,并采用耦合后的程序对大破口叠加安注失效及全厂断电叠加辅助给水丧失两个典型初因事故导致的严重事故序列进行了计算,将计算结果与相同初始条件下MAAP4的计算结果进行对比分析。结果表明,SimSA中采用的这种耦合方式是成功的。  相似文献   

10.
Severe accident analysis for Korean OPR1000 with MELCOR 1.8.6 was performed by adapting a mitigation strategy under different entry conditions of Severe Accident Management Guidance (SAMG). The analysis was focused on the effectiveness of the mitigation strategy and its adverse effects. Four core exit temperatures (CETs) were selected as SAMG entry conditions, and Small Break Loss of Coolant Accident (SBLOCA), Station Blackout (SBO), and Total Loss of Feed Water (TLOFW) were selected as postulated scenarios that may propagate into severe accidents. In order to delay reactor pressure vessel (RPV) failure, entering the SAMG when the CET reached 923 K, 923 K, and 753 K resulted in the best results for SBLOCA, SBO, and TLOFW scenarios, respectively. This implies that using event-based diagnosis for severe accidents may be more beneficial than using symptom-based diagnosis. There is no significant difference among selected SAMG entry conditions in light of the operator's available action time before the RPV failure. Potential vulnerability of the RPV due to hydrogen generation was analyzed to investigate the foreseeable adverse effects that act against the accident mitigation strategies. For the SBLOCA cases, mitigation cases generated more hydrogen than the base case. However, the amount of hydrogen generated was similar between the base and mitigation cases for SBO and TLOFW. Hydrogen concentrations of containment were less than 5% before RPV failure for most cases.  相似文献   

11.
全厂断电(SBO)可能发展成为堆芯熔化、安全壳超压失效的严重事故。本文首先研究全厂断电事故的必要性以及在辅助给水系统不可用情况下的全厂断电事故的进程,随后定性的分析了事故进程在主泵轴封泄漏和对一回路实施减压缓解措施的影响下所具有的不同的发展情况。最后以秦山核电厂为例对其在提高应对全厂断电事故的能力和改进缓解事故后果的措施方面提出了建议。  相似文献   

12.
Hydrogen safety has attracted extensive concern in severe accident analysis especially after the Fukushima accident. In this study, a similar station blackout as happened in Fukushima accident is simulated for CPR1000 nuclear power plant (NPP) model, with the computational fluid dynamic code GASFLOW. The hydrogen risk is analyzed with the assessment of efficiency of passive autocatalytic recombiner (PAR) system. The numerical results show that the CPR1000 containment may be damaged by global flame acceleration (FA) and local detonation caused by hydrogen combustion if no hydrogen mitigation system (HMS) is applied. A new condensation model is developed and validated in this study for the consideration of natural circulation flow pattern and presence of non-condensable gases. The new condensation model is more conservative in hydrogen risk evaluation than the current model in some compartments, giving earlier starting time of deflagration to detonation transition (DDT). The results also indicate that the PAR system installed in CPR1000 could prevent the occurrence of the FA and DDT. Therefore, HMS such as PAR system is suggested to be applied in NPPs to avoid the radioactive leak caused by containment failure.  相似文献   

13.
The Modular Accident Analysis Program version 5 (MAAP5) is a computer code that can simulate the response of light water reactor power plants during severe accident sequences. The present work aims to simulate the severe accident of a typical Chinese pressure water reactor (PWR) with MAAP5. The pressurizer safety valve stuck-open accident is essentially a small break loss-of-coolant accident (SBLOCA), which becomes one of the major concerns on core melt initiating events of the PWR. Six cases with different assumptions in the pressurizer (PZR) safety valves (SVs) stuck-open accident stuck open accident were analyzed for comparison. The results of first three cases show that the severe accident sequence is correlated with the number of the stuck open valve. The primary system depressurized faster in a more SVs stuck open case, and the consequences in which is hence slighter. The remaining 3 cases along with the case 2 were then analyzed to study the effect of operator intervention to the accident. The results show that the auxiliary feed water (AFW) is effective to delay the core degradation and hence delayed the finally system recovery. The high pressure injection (HPI) operation and manually opening the steam generator (SG) SVs are effective to mitigate this kind of severe accident. The results are meaningful and significant for comprehending the detailed process of PWR severe accident, which is the basic standard for establishing the severe accident management guidelines.  相似文献   

14.
This paper is an overview of a Sandia National Laboratories, Albuquerque (SNLA) study of the performance of mechanical penetrations in light-water reactor (LWR) containment buildings that are subjected to severe accident environments. The study is concerned with modes of failure as well as the magnitude of leakage. The following tests have been completed, are under way, or are planned: (a) seals and gaskets have been tested to register the effects of radiation aging, thermal aging, seal geometry, and squeeze on seal and gasket materials in severe accident environments; (b) the performance of a full-scale airlock will be evaluated at severe accident temperature and pressure levels; (c) personnel airlock and equipment hatch tests were made on a model of a steel containment building; and (d) tests of mechanical penetrations are planned as part of a test on a model of a reinforced concrete building. This program is part of an overall US Nuclear Regulatory Commission (USNRC) effort to evaluate the integrity of LWR containment buildings.  相似文献   

15.
Severe accident analysis of a reactor is an important aspect for evaluation of source term. This in turn helps in emergency planning and severe accident management (SAM). Analyses have been carried out for VVER-1000 (V320) reactor following LOCA along with station blackout (SBO) to generate information on these aspects. Availability and unavailability of hydro-accumulators (HAs) are also considered for this study. Integral code ASTEC V1.3 (jointly developed by IRSN, France, and GRS, Germany) is used for analysing the transients. The predictions of different severe accident parameters like vessel rupture time, hydrogen and corium production and radioactivity release to containment have been compared for a spectrum of break sizes to provide information for probabilistic safety analysis (PSA) level-2 and severe accident management (SAM) guidelines.  相似文献   

16.
华龙一号(HPR1000)设计了堆腔注水冷却系统(CIS)以实现严重事故期间熔融物的堆内滞留(IVR),该系统分为能动与非能动两列子系统,其中非能动CIS应对的是全厂断电(SBO)始发的严重事故工况。本文对非能动CIS的事故缓解能力进行评估。首先开发了下封头熔池换热计算程序并予以验证,使用MAAP程序对SBO严重事故序列及SBO叠加不同尺寸一回路破口始发的严重事故序列进行计算,并结合熔池换热计算程序得到不同事故序列下的压力容器外壁面最大热流密度,进而评估不同事故序列下非能动CIS的有效性。评估结果表明,非能动CIS可有效应对SBO始发的严重事故序列以及SBO叠加一回路破口尺寸小于60 mm始发的严重事故序列,实现IVR策略。评估结果可应用于HPR1000的严重事故管理。  相似文献   

17.
参照对先进压水堆安全壳的要求,结合恰希玛二期工程严重事故缓解措施,对大破口失水事故(LLOCA)叠加安注失效、小破口失水事故(SLOCA)叠加安注失效、全厂断电(SBO)叠加柴油机驱动的辅助给水失效等严重事故序列可能影响安全壳内环境的条件及缓解措施进行了分析.结果表明,恢复喷淋可以明显地降低安全壳内的压力和温度,有效地改善安全壳内的环境,从而改善各种仪表设备的工作条件.  相似文献   

18.
A depressurization possibility of the reactor coolant system (RCS) before a reactor vessel rupture during a high-pressure severe accident sequence has been evaluated for the consideration of direct containment heating (DCH) and containment bypass. A total loss of feed water (TLOFW) and a station blackout (SBO) of the advanced power reactor 1400 (APR1400) has been evaluated from an initiating event to a creep rupture of the RCS boundary by using the SCDAP/RELAP5 computer code. In addition, intentional depressurization of the RCS using power-operated safety relief valves (POSRVs) has been evaluated. The SCDAPRELAP5 results have shown that the pressurizer surge line broke before the reactor vessel rupture failure, but a containment bypass did not occur because steam generator U tubes did not break. The intentional depressurization of the RCS using POSRV was effective for the DCH prevention at a reactor vessel rupture.  相似文献   

19.
核电厂在严重事故期间会产生大量氢气并释放到安全壳内,威胁安全壳的完整性。应用氢气风险分析程序GASFLOW对先进压水堆核电站在大破口失水事故叠加应急堆芯冷却系统失效导致的严重事故期间的氢气行为及风险进行分析。结果表明,当气体释放源位于蒸汽发生器隔间时,氢气流动的主要路径为"蒸汽发生器隔间—穹顶空间—操作平台以下隔间";破口隔间的氢气体积浓度分布与源项氢气体积浓度及射流形态有关,非破口区域的氢气体积浓度呈层状分布,在扩散作用下,层状分布向下推移;蒸汽发生器隔间存在着火焰加速(FA)的可能性,但基本可排除燃爆转变(DDT)的可能性,穹顶区域基本可排除FA和DDT的可能性。  相似文献   

20.
A complete, coupled, mechanistic analysis of the entire reactor coolant system during a station blackout accident (TMLB') has been completed using the MELPROG/TRAC code. The analysis includes the failure of the seal on all coolant pumps at 100 min into the accident; in all other respects the case is identical to a previous station blackout calculation. Both cases started at accident initiation and continued through boiloff of the water, failure of the control and fuel rods, oxidation of the zircaloy and the formation of U---Zr---O eutectics, failure of the vessel internal structures due to melting and loading, massive core disruption, and subsequent vessel failure. The two cases reached significantly different end conditions. The basic TMLB' resulted in a high pressure (15 MPa) vessel failure approximately 4 h after accident initiation. The addition of a 12.5-mm hole in each pump seal caused the water in the loop seal to clear and resulted in a significantly lower pressure (0.27 MPa) at vessel failure, which occurred almost 10 h after accident initiation. Therefore, high pressure melt ejection (HPME) and the potential for subsequent direct containment heating (DCH) were predicted not to occur in the TMLB' accident scenario with pump seal failure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号