共查询到20条相似文献,搜索用时 31 毫秒
1.
The application of ground granulated blast furnace slag (GGBFS) and steel fibers in prestressed concrete railway sleepers was investigated in this study. The use of GGBFS was considered as an eco-friendly material aimed at reducing CO2 emissions and energy consumption as well as to enhance the durability performance of railway sleepers. Steel fibers improves the durability and structural performance in terms of crack control and reduction of spalling and can replace shear reinforcement. The mix proportions of the concrete incorporating GGBFS (56% GGBFS) and GGBFS with steel fibers (56% GGBFS and 0.75% steel fibers) were determined through a series laboratory tests and a life cycle assessment. These mixes satisfied the requirements of the Korean Railway Standard and resulted in improved flexural capacity as well as less CO2 emissions compared with current railway sleepers. Using these mixes, a total of ninety prestressed concrete sleepers were produced in a factory under the same manufacturing process as current railway sleepers, and their mechanical properties as well as durability performance were evaluated. The mix with partial replacement of Type III Portland cement by GGBFS showed an improved resistance to chloride ion penetration and freeze-thaw cycles compared with the concrete used for current railway sleepers. However, these mixes were more vulnerable to carbonation. The mix with GGBFS and steel fibers (mix BSF) showed a slightly better durability performance than the mix with GGBFS only (mix BS), including better carbonation and freeze-thaw resistances. The mix BSF showed decreased chloride ion penetration depth than mix BS but showed a slightly higher chloride ion diffusion coefficient. 相似文献
2.
Ioanna Papayianni Eleftherios Anastasiou 《Cement and Concrete Composites》2012,34(3):400-407
Ladle furnace slag (LFS), a by-product of the steel making process, was tested for its potential use as a supplementary cementing material. The material used for the tests was screened or ground, producing three samples of different fineness, and the granulometry of these LFS samples was also tested by particle size analysis. Their chemical and mineralogical composition was assessed by chemical analysis, X-ray diffraction and thermogravimetric analysis. Finally, in order to determine the cementitious and pozzolanic character of LFS in relation to its granulometry, slag-lime and slag-cement mortars were produced and tested in compression. The results show that although LFS is a weak supplementary cementing material, it shows some self-cementing and pozzolanic properties that can be enhanced by screening or grinding the raw material. Even though different levels of fineness and granulometry can be reached with each method, generally, grinding seems to improve LFS binding properties more than sieving. 相似文献
3.
High Performance Fiber Reinforced Concrete (HPFRC) is a structural material with advanced mechanical properties. The structural design of HPFRC members is based on the post-cracking residual strength provided by the addition into the mix of the fibers. Moreover, the addition of different types of mineral admixtures influences the overall behavior of this material. In order to optimize the performance of HPFRC in structural members, it is necessary to evaluate the mechanical properties and the post-cracking behavior in a reliable way. As a result, an experimental study on six different sets of HPFRC specimens was carried out. The main parameters that varied were the fiber volume content and the types of mineral addition. The behavior in compression, in flexural tension and the shrinkage properties were evaluated and critically analyzed in order to give a guide for structural use.The results showed that by adding high fiber volume content and the Algerian blast furnace slag into the mix, the HPFRC material obtained has a very good performance and it is suitable for use in practice. 相似文献
4.
In this study, binary and ternary use of marble powder (MP) and ground granulated blast furnace slag (GGBFS) have been investigated
in the production of self compacting mortars (SCMs). The marble powder was obtained as an industrial by-product during sawing,
shaping, and polishing of marble. A total of 19 SCM mixtures were proportioned having a constant water-binder ratio of 0.40
and the total binder content of 550 kg/m3. The control mixture contained only portland cement (PC) as the binder while the remaining mixtures incorporated binary and
ternary blends of PC, MP, and GGBFS. After mixing, the fresh properties of the SCM were tested for mini-slump flow diameter,
mini-V funnel flow time, initial and final setting times, and viscosity. Moreover, compressive strength and ultrasonic pulse
velocity of the hardened SCMs were measured. Test results indicated that the inclusion of MP increased the V-funnel flow time,
setting times, and viscosity of SCMs whereas decreased the hardened properties. Using GGBFS, on the other hand, decreased
the V-funnel flow time and viscosity while increased the setting times of SCMs. 相似文献
5.
V. Boel K. Audenaert G. De Schutter G. Heirman L. Vandewalle B. Desmet J. Vantomme 《Materials and Structures》2007,40(5):507-516
The durability of a cementitious material is greatly influenced by the permeability of the material for potentially aggressive substances. As the pore structure of self compacting concrete (SCC) might be different in comparison with traditional concrete (TC), some changes in durability behaviour may occur. At this moment however, it is unclear how significant these differences will be with regard to the concrete practice. In this paper, the gas and water transport in SCC with limestone filler or fly ash is investigated experimentally. Nine different concrete compositions are considered: one TC and eight SCC mixtures. Some important parameters like the water/cement (W/C) and cement/powder ratio (C/P), type of filler (limestone filler and fly ash), type of aggregate and type of cement are considered. The results of the gas and water transport are discussed and linked to experimental data concerning pore volume. Lower transport properties can be obtained by using fly ash instead of limestone as filler material, by lowering the W/C ratio, decreasing the C/P ratio at a constant W/C ratio or using blast furnace slag cement instead of portland cement. The effect of changing from gravel to crushed limestone is small. SCC is differing strongly of TC with respect to the apparent gas permeability. This difference is probably due to the differences in pore volume, as seen from MIP results. 相似文献
6.
As previous studies of mortar and concrete with steel furnace slag (SFS) aggregates have shown increases or decreases in the bulk mechanical properties, this study investigated the microstructural cause of these opposing trends through characterization of the interfacial transition zone (ITZ) with quantitative image analysis of backscatter electron micrographs. Three SFS types – basic oxygen furnace (BOF), electric arc furnace (EAF), EAF/ladle metallurgy furnace (EAF/LMF) – were examined as aggregates in a portland cement mortar. The ITZ size for all SFS mortar mixtures was similar, with the ITZ of BOF and EAF/LMF being slightly more porous than mortar mixtures with EAF or dolomite. Microstructural examinations of the SFS particle revealed that BOF and EAF/LMF aggregates have different outer and interior compositions, with the outer composition consisting of a porous layer, which likely contributes to the reduced strength relative to EAF. The imaging results demonstrated that the type of SFS and its spatial composition greatly influences the bulk properties of mortar and concrete, mainly as a function of porosity content in the ITZ and the outer layer and interior porosity of the SFS aggregate. 相似文献
7.
《材料与设计》2015
In the last decade the steel fiber reinforced self-compacting concrete (SFRSCC) has been used in several partially and fully structural applications. This study investigates how the inclusion of steel fibers affects the properties of SFRSCC. For this purpose, an extensive experimental program including different cement contents of 400, 450 and 500 kg/m3, two maximum aggregate sizes of 10 and 20 mm along with steel fiber volume fractions of 0%, 0.38%, 0.64% and 1% was conducted. The water/cement ratio was kept constant at 0.45 for all the mixes studied. Mechanical properties were tested for compressive, splitting tensile and flexural strengths and modulus of elasticity. The results showed that mixture characteristics and volume fraction of steel fibers can significantly affect these major properties. Furthermore, this study represents extensive comparisons using database that have been gathered from a wide variety of international sources reported by many researchers and data obtained experimentally, which came up with about some discrepancies in the results. 相似文献
8.
Mohammad Mohammadhassani Mohd Zamin Jumaat Ashraf Ashour Mohammed Jameel 《Engineering Failure Analysis》2011,18(8):2272-2281
The behaviour of deep beams is significantly different from shallow beams. In deep beams, the plane section does not remain plane after deformation. The main purpose of this study is to facilitate the prediction of deep beam failure related to tensile bar and web reinforcement percentage variations. Six high strength self compacting concrete (HSSCC) deep beams were tested until failure. Strains were measured on concrete surface along mid span, tensile bar and compression strut trajectory. The load was incrementally applied and at each load increment new cracks, their widths and propagation were monitored. The results clearly show that, at ultimate limit condition, the strain distribution on concrete surface along mid-span is no longer parabolic. In deep beams several neutral axes were obtained before ultimate failure is reached. As the load increases, the number of neutral axis decreases and at failure load it reduces to one. The failure of deep beams with longitudinal tensile steel reinforcement less than that suggested by ACI codes is flexural and is accompanied by large deflections without any inclined cracks. As the longitudinal tensile steel reinforcement increases, the failure due to crushing of concrete at nodal zones was clearly observed. The first flexural crack at mid-span region was always vertical. It appeared at 25–42% of peak load. The crack length was in the range of 0.24–0.6 times the height of section. As the tensile bar percentage increases number of cracks increases with reduced crack length and crack width. The appearance of first inclined crack in compression strut trajectory is independent of tensile and web bar percentage variations. 相似文献
9.
This paper presents the effect of air curing, water curing and steam curing on the compressive strength of Self Compacting Concrete (SCC). For experimental study, SCC is produced with using silica fume (SF) instead of cement by weight, by the ratios of 5%, 10% and 15%, and fly ash (FA) with the ratios of 25%, 40% and 55%. It is observed that mineral admixtures have positive effects on the self settlement properties. The highest compressive strength was observed in the concrete specimens with using 15% SF and for 28 days water curing. Air curing caused compressive strength losses in all groups. Relative strengths of concretes with mineral admixtures were determined higher than concretes without admixtures at steam curing conditions. 相似文献
10.
Rüstem Gül 《Materials Letters》2007,61(29):5145-5149
The effect of hooked steel, wavy steel and polypropylene fibers on the thermo-mechanical properties of raw perlite aggregate concrete was investigated. In order to determine the effect of fiber ratio on the thermo-mechanical properties of 100% raw perlite concrete, 0.25%, 0.75%, 1.25%, and 1.75% fiber ratios were used by volume of the sample and also, 350 kg/m3 cement dosage and 3 ± 1 cm slump were used. When compared to the control sample that contains no fiber, (1) with the increase of steel fiber ratio in the mixtures thermal conductivity (TC), unit weight, splitting-tensile strength, and flexural strength of concretes increased, (2) with the increase of steel fiber ratio in the mixtures compressive strength of concretes decreased, and (3) with the increase of polypropylene fiber ratio in the mixtures TC, unit weight, compressive strength, splitting-tensile strength, and flexural strength of concretes decreased. 相似文献
11.
Combined effect of silica fume and steel fibers on the impact resistance and mechanical properties of concrete 总被引:1,自引:0,他引:1
This study investigated the impact resistance and mechanical properties of steel fiber-reinforced concrete with water–cement ratios of 0.46 and 0.36, with and without the addition of silica fume. Hooked steel fibers with 60-mm length and an aspect ratio of 80, with three volume fractions of 0%, 0.5%, and 1% were used as the reinforcing material. In pre-determined mixtures, silica fume is used as a cement replacement material at 8% weight of cement. The experimental results show that incorporation steel fibers improve the strength performance of concrete, particularly the splitting tensile and the flexural strengths. A remarkable improvement was observed in impact resistance of the fibrous concretes, as compared with the reference materials. The results demonstrate that when steel fiber is introduced into the specimens including silica fume, the impact resistance and the ductility of the resulting concrete are considerably increased. 相似文献
12.
The shear-flexure response of steel fiber reinforced concrete (SFRC) beams was investigated.Thirty-six reinforced concrete beams with and without conventional shear reinforcement (stirrups) were tested under a four-point bending configuration to study the effectiveness of steel fibers on shear and flexural strengths, failure mechanisms, crack control, and ductility.The major factors considered were compressive strength (normal strength and high strength concrete up to 100 MPa), shear span-effective depth ratio (a/d = 1.5, 2.5, 3.5), and web reinforcement (none, stirrups and/or steel fibers).The response of RC beams was evaluated based on the results of crack patterns, load at first cracking, ultimate shear capacity, and failure modes.The experimental evidence showed that the addition of steel fibers improves the mechanical response, i.e., flexural and shear strengths and the ductility of the flexural members.Finally, the most recent code-based shear resistance predictions for SFRC beams were considered to discuss their reliability with respect to the experimental findings. The crack pattern predictions are also reviewed based on the major factors that affect the results. 相似文献
13.
This paper presents an experimental study on the development of normal strength Self compacting concrete (SCC) from uncontrolled burning of rice husk ash (RHA) as a partial replacement to cement and blended fine aggregate whilst maintaining satisfactory properties of SCC. Experiments on the fresh and hardened state properties have been carried out on RHA based SCC from uncontrolled burning. The dosages of RHA are limited to 0%, 20%, 30% and 40% by mass of the total cementitious material in the concrete. The experiments on fresh state properties investigate the filling ability, the passing ability and the segregation resistance of concrete. The experiments on hardened state properties investigate the compressive and the splitting tensile strengths. The water absorption level of the concrete with changing RHA levels has also been monitored. The experimental studies indicate that RHA based SCC developed from uncontrolled burning has a significant potential for use when normal strength is desired. 相似文献
14.
This paper presents the results of an experimental investigation carried out to study the effect of granulated blast furnace slag and two types of superplasticizers on the properties of self-compacting concrete (SCC). In control SCC, cement was replaced with 10%, 15%, 20%, and 25% of blast furnace slag. Two types of superplasticizers: polycarboxylate based superplasticizer and naphthalene sulphonate based superplasticizers were used. Tests were conducted for slump flow, the modified slump test, V-Funnel, J-Ring, U-Box, and compressive strength. The results showed that polycarboxylate based superplasticizer concrete mixes give more workability and higher compressive strength, at all ages, than those with naphthalene sulphonate based superplasticizer. Inclusion of blast furnace slag by substitution to cement was found to be very beneficial to fresh self-compacting concrete. An improvement of workability was observed up to 20% of slag content with an optimum content of 15%. Workability retention of about 45 min with 15% and 20% of slag content was obtained using a polycarboxylate based superplasticizer; compressive strength decreased with the increase in slag content, as occurs for vibrated concrete, although at later ages the differences were small. 相似文献
15.
Mechanical, durability and microstructural characteristics of ultra-high-strength self-compacting concrete incorporating steel fibers 总被引:1,自引:0,他引:1
Few researches are carried out in the Gulf area to study the feasibility of producing UHSC using available local materials with the inclusion of steel fibers, and investigate its properties and durability. Local available materials and the inclusion of steel fibers with different volume fractions are investigated to produce UHSC. Different mechanical properties are evaluated (compressive strength and splitting tensile strength). Durability of the concrete in high sulfate and high temperature condition (i.e. resembling Gulf environment) is evaluated. Also, chloride permeability, bulk chloride diffusion and electrical resistivity are evaluated. Test results indicate that local material can produce UHS–FRC. The ductility of the concrete is greatly improved by the incorporation of steel fibers and increases as the fiber volume increases. Chloride permeability, bulk chloride diffusion and electrical resistivity are affected by the volume fraction of steel fibers. The inclusion of steel fibers did not have significant effect on the durability of the concrete in the sulfate environment. Microstructural investigations of UHS–FRC concrete were also performed. The microstructural investigations shed some light on the nature of interfacial bond of fibers and the cement paste and its effect on its mechanical and fracture properties. 相似文献
16.
This study investigates the effects of continuous deicer exposure on the performance of pavement concretes. For this purpose, the differences in the compressive strength, the changes in the dynamic modulus of elasticity (DME) and the depth of chloride ingress were evaluated during and after the exposure period. Eight different concrete mixtures containing two types of coarse aggregates (i.e. air-cooled blast furnace slag (ACBFS) and natural dolomite) and four types of binder systems (i.e. plain Type I ordinary portland cement (OPC) and three combinations of OPC with fly ash (FA) and/or slag cement (SC)) were examined. These mixtures were exposed to three types of deicers (i.e. MgCl2, CaCl2, and NaCl) combined with two different exposure conditions (i.e. freezing-thawing (FT) and wetting-drying (WD)). In cold climates, these exposure conditions are the primary durability challenges that promote the physical deterioration of concrete pavements. The results indicated that among the studied deicers, CaCl2 had the most destructive effect on the tested concretes while NaCl was found to promote the deepest level of chloride ingress yet was shown to have the least damaging impact on concretes. The microstructure evaluation revealed that the mechanism of concrete deterioration due to the deicer exposure involved chemical reactions between the deicers and concrete hydration products. The use of FA or SC as partial replacements for OPC can offset the detrimental effects of both deicers and FT/WD cycles. 相似文献
17.
Steel slag has been used as supplementary cementitious materials or aggregates in concrete. However, the substitution levels of steel slag for Portland cement or natural aggregates were limited due to its low hydraulic property or latent volume instability. In this study, 60% of steel slag powders containing high free-CaO content, 20% of Portland cement and up to 20% of reactive magnesia and lime were mixed to prepare the binding blends. The binding blends were then used to cast concrete, in which up to 100% of natural aggregates (limestone and river sands) were replaced with steel slag aggregates. The concrete was exposed to carbonation curing with a concentration of 99.9% CO2 and a pressure of 0.10 MPa for different durations (1d, 3d, and 14d). The carbonation front, carbonate products, compressive strength, microstructure, and volume stability of the concrete were investigated. Results show that the compressive strength of the steel slag concrete after CO2 curing was significantly increased. The compressive strengths of concrete subjected to CO2 curing for 14d were up to five-fold greater than that of the corresponding concrete under conventional moist curing for 28d. This is attributed to the formation of calcium carbonates, leading to a microstructure densification of the concrete. Replacement of limestone and sand aggregates with steel slag aggregates also increased the compressive strengths of the concrete subjected to CO2 curing. In addition, the concrete pre-exposed to CO2 curing produced less expansion than the concrete pre-exposed to moist curing during the subsequent accelerated curing in 60 °C water. This study provides a potential approach to prepare concrete with low-carbon emissions via the accelerated carbonation of steel slag. 相似文献
18.
In the present work the effect of steel fiber hybridization on the mechanical and rheological behavior of self-consolidating concretes was studied. Straight and hooked end steel fibers with different lengths and diameters were used as reinforcement in fiber volume fractions of 1.0% and 1.5%. The viscosity and shear yield stress of the concretes was determined using a parallel plate rheometer. The mechanical behavior was determined by means of compression, tension and bending tests. The movement of the neutral axis under bending load was experimentally determined by strain-gages attached to compression and tensile surfaces. The mechanical response of the material under bi-axial bending was addressed using the round panel test in three different boundary conditions. The obtained results indicated that the fiber hybridization improved the behavior of the composites for low strain and displacement levels increasing the serviceability limit state of the same through the control of the crack width. 相似文献
19.
The influence of high-calcium fly ash and silica fume as a binary and ternary blended cement on compressive strength and chloride resistance of self-compacting concrete (SCC) were investigated in this study. High-calcium fly ash (40–70%) and silica fume (0–10%) were used to replace part of cement at 50, 60 and 70 wt.%. Compressive strength, density, volume of permeable pore space (voids) and water absorption of SCC were investigated. The total charge passed in coulombs was assessed in order to determine chloride resistance of SCC. The results show that binary blended cement with high level fly ash generally reduced the compressive strength of SCC at all test ages (3, 7, 28 and 90 days). However, ternary blended cement with fly ash and silica fume gained higher compressive strength after 7 days when compared to binary blended fly ash cement at the same replacement level. The compressive strength more than 60 MPa (high strength concrete) can be obtained when using high-calcium fly ash and silica fume as ternary blended cement. Fly ash decreased the charge passed of SCC and tends to decrease with increasing fly ash content, although the volume of permeable pore space (voids) and water absorption of SCC were increased. In addition when compared to binary blended cement at the same replacement level, the charge passed of SCC that containing ternary blended cement was lower than binary blended cement with fly ash only. This indicated that fly ash and silica fume can improve chloride resistance of SCC at high volume content of Portland cement replacement. 相似文献
20.
为了确定钢渣混凝土是否具有感知应力的功能,研究了钢渣混凝土在不同荷载条件下的电阻变化规律,即压敏性.通过模拟试验测试了不同加载速率、循环加载、突然加载和卸载等加载条件下钢渣混凝土的压敏性.结果表明,随着钢渣掺量的增加,钢渣混凝土的压敏效应更加明显;压力较小时,电阻率随压力增大而迅速降低;压力增大到一定程度后,电阻率下降十分缓慢;压力达到极限荷载时,电阻率迅速升高;在循环加载情况下,第一次加载循环时钢渣混凝土电阻变化率高于第二次加载循环时的变化率.钢渣混凝土成本很低,制备方法简单,与碳纤维增强水泥一样具有良好的压敏性,因此具有较好的应用前景. 相似文献