首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The objective of this study was to evaluate effect of heat treatment and compression on some properties of Eastern redcedar (Juniperus virginiana) including bonding strength, hardness and surface quality. Specimens were exposed to three temperature levels of 120 °C, 160 °C and 190 °C for 6 h before they were compressed using 2.5 MPa pressure for 5 min. Polyvinyl acetate (PVAc) bonded specimens showed 23.6% reduction in their shear strength when they were exposed to a temperature of 120 °C. Such strength reduction values were 44.4% and 64.1% for the specimens exposed to temperature levels of 160 °C and 190 °C, respectively. The lowest average Janka hardness value of 214.08 kg was determined for the samples exposed to a temperature of 190 °C while those treated with a temperature of 120 °C had the highest hardness value of 397.73 kg. It appears that combination of heat treatment and compression enchanced overall surface quality of the samples in the form of their roughness determined using stylus type equipment.  相似文献   

2.
The objective of this work is to investigate the effect of heat treatment on swelling, hardness and surface quality of samples from four species, namely mindi (Melia azedarch L.), mahogany (Swietenia macrophyla), red oak (Quercus falcate Michx.) and Southern pine (Pinus taeda L.). Specimens were exposed to temperature levels of 130 °C and 200 °C for 2 and 8 h. Swelling values of the control and heat treated samples were evaluated by soaking them in water for 2 h. Surface quality and hardness of the species were also determined using a stylus technique and Janka hardness, respectively. Based on the findings in this study dimensional stability of all four types of samples improved with heat treatment. Surface quality of the specimens was also significantly enhanced by exposing them to heat. Micrographs taken from scanning electron microscope revealed that there was some distortion and modification of the cells due to heat treatment. Overall hardness of the samples was adversely influenced by heat treatment. It seems that properties of the species evaluated in this investigation were more pronounced with increasing temperature and time span.  相似文献   

3.
The effect of heat treatment on the microstructure, hardness and rollability of V55Ti30Ni15 alloy membranes has been investigated in this study. The microstructure resulting from different heat treatment conditions has a great influence on hardness. Fine NiTi particles precipitate from the supersaturated V-matrix solid solution at temperatures above 600 °C, increase in quantity until 800 °C, then dissolve back into the V-matrix with a further increase in temperature up to 950 °C. The resultant hardness decreases with temperature until 800 °C, and then increases from 800 to 950 °C. In the present study, a comparison has been made between the rollability of the as-cast and the heat treated state selected for deformation at different rolling temperatures. The percent reduction in thickness of the heat-treated alloy (800 °C/18 h) has been found to be up to 30% higher than that of the as-cast alloy, even at room temperature (cold rolling).  相似文献   

4.
In this study, the effect of heat treatment on the tribological properties of Al–Cu–Mg alloy reinforced with 4 wt.% SiC particles with 650 nm average particle size has been investigated. The age hardening process consists of solution treatment at 540 °C for 6 h, followed by water quenching and ageing at different temperatures of 175, 200 and 225 °C with soaking times of 3, 6 and 9 h. Hardness measurements were applied to monitor the precipitation effect and the aged samples were then subjected to wear tests under dry sliding conditions against steel and alumina counterfaces. The results showed that the reinforced material exhibits an enhanced ageing response compared to the unreinforced material in the same heat treatment conditions. The rate of ageing increases with increasing temperature; however, ageing at 200 and 225 °C for more than 6 h resulted in over-ageing. The best combinations for the enhanced tribological properties for the composite material were selected as 6 h ageing at 225 °C. The precipitation effect for this alloy can be enhanced by the small addition of SiC nanoparticles. Having a small amount of nanoSiC particles with fine precipitates inside the matrix further increases the hardness and wear properties.  相似文献   

5.
In this study, static strain ageing behavior of commercially available and solution heat treated duplex stainless steel was investigated and the effect of static strain ageing on the mechanical properties was also determined in detail. Some of as-received duplex stainless steel test specimens were pre-strained in tension by 5% and then aged at 100 °C, 200 °C, 300 °C, 400 °C, 500 °C and 600 °C for 30 min in furnace. Some of duplex stainless steel test specimens were solution heat treated at 1050 °C for 30 min, water quenched and then pre-strained for 5% in tension shortly after the solution heat treatment.In order to identify the effect of static strain ageing on the mechanical properties, the tensile strength, the change in the strength due to ageing (ΔY), elongation fracture and hardness were determined. The test results showed that the mechanical properties were affected by static strain ageing mechanism which was applied at different temperatures for same time interval.  相似文献   

6.
Homogenizing and normalizing heat treatments were performed on low carbon–manganese steel. Then, direct and continuous annealing heat treatments were carried out at 800 °C, 770 °C, 750 °C and 725 °C. Finally; dual phase ferrite–martensite steel was obtained. Thereafter, hardness and tensile tests were applied at ambient temperature, and impact tests for the initial sample and the dual-phase steels obtained from continuous and direct annealing heat treatment in the temperature ranges of (−67 to +70), (−70 to +60), (−70 to +29), respectively, were accomplished. The ductile–brittle transition temperature (DBTT) and the fracture modes of the samples were obtained, and the fracture surface of the steel was observed through scanning electron microscopy (SEM). The results revealed that the best mechanical properties in dual-phase steels, like impact toughness and flexibility, appear at the inter-critical temperature of 725 °C for both continuous and direct annealing cycles. The (DBTT) for the specimens obtained from direct and continuous annealing and the initial sample were −49 °C, −6 °C, and −34 °C, respectively. The dual-phase specimen achieved through the direct annealing method had better toughness and impact properties than the initial specimen or the one obtained through continuous annealing.  相似文献   

7.
Degree of surface quality of wood plastic composites (WPCs) is a function of both raw material characteristics and the manufacturing variables. The WPC panels comprised of different panel densities (800, 950, 1000, and 1080 kg/m3), wood flour contents (50, 60, 70, and 80 wt.%), wood flour sizes (<0.5, ?0.5 to <0.8, 0.8–1, and >1 mm), and hot-pressing temperatures (190 and 210 °C) were manufactured using a dry blend/flat-pressing method under laboratory conditions. The surface smoothness of the WPC panels improved with increasing WPC density, plastic content, and hot-pressing temperature while it deteriorated with increasing wood flour size. The reduction in the particle size of the WF resulted in a more compact structure on the WPC surface. In general, the wettability of the samples increased by increasing surface roughness.  相似文献   

8.
Heat treatment is a relatively benign modification method that is growing as an industrial process to improve hygroscopicity, dimensional stability and biological resistance of lignocellulosic fillers. There also has been increased interest in the use of lignocellulosic fillers in numerous automotive applications. This study investigated the influence of untreated and heat treated wood fillers on the mechanical and rheological properties of wood filled nylon 6 composites for possible under-the-hood applications in the automobile industry where conditions are too severe for commodity plastics to withstand. In this study, exposure of wood to high temperatures (212 °C for 8 h) improved the thermal stability and crystallinity of wood. Heat treated pine and maple filled nylon 6 composites (at 20 wt.% loading) had higher tensile strengths among all formulations and increased tensile strength by 109% and 106% compared to neat nylon 6, respectively. Flexural modulus of elasticity (FMOE) of the neat nylon 6 was 2.34 GPa. The FMOE increased by 101% and 82% with the addition of 30 wt.% heat treated pine and 20 wt.% heat treated maple, where it reached maximum values of 4.71 GPa and 4.27 GPa, respectively. The rheological properties of the composites correlated with the crystallinity of wood fillers after the heat treatment. Wood fillers with high crystallinity after heat treatment contributed to a higher storage modulus, complex viscosity and steady shear viscosity and low loss factor in the composites. This result suggests that heat treatment substantially affects the mechanical and rheological properties of wood filled nylon 6 composites. The mechanical properties and thermogravimetric analysis indicated that the heat treated wood did not show significant thermal degradation under 250 °C, suggesting that the wood-filled nylon composites could be especially relevant in thermally challenging areas such as the manufacture of under-the-hood automobile components.  相似文献   

9.
In this work, influences of temperature and hot working on microstructure evolution of a Nickel Aluminum Bronze alloy (NAB) were studied. First, as-cast NAB alloy was annealed and subsequently cooled in air for obtaining homogeneous structure. Microstructure and mechanical properties of NAB specimens before and after annealing were characterized by tensile test, hardness test, optical microscopy and scanning electron microscopy. Then, annealed NAB samples were heat treated at different temperatures between 750 °C and 1000 °C and rapidly cooled down to room temperature. The results showed that amounts and types of emerged microstructures and corresponding hardness strongly depended on the applied temperatures. Additionally, hot compression tests during the temperature range of 800 °C and 950 °C were performed for the annealed NAB alloy. After forming, specimens were cooled down with two different cooling rates of 40 °C/s and 100 °C/s. Developed microstructure and resulting hardness of the deformed NAB alloy were discussed regarding to the heat treating conditions.  相似文献   

10.
Physical, mechanical, and morphological properties of solid wood lumbers which were cold pressed in a press and then heat treated in a kiln. Two different kinds of domestic thinning small-diameter softwood (Ginko biloba L.) and hardwood (Tilia amurensis Rupr.) were used in this study. First 50 mm thick lumbers were cold pressed until 35 mm (30% of control lumber) using a stopper for 5 min. Then the cold pressed lumbers were heat treated in an electric kiln at 180 °C for 6, 12, 24, or 48 h. To increase the utilizability of woods, the LVLs were produced from 4 mm thick veneers prepared from the heat treated lumbers using a veneer saw. Each LVL sample consisted of 5 layers which were subsequently 48 h-, 24 h-, 12 h-, and 6 h-treated veneers and untreated veneer (from top layer to bottom layer). The shrinkage rates of softwood and hardwood were considerably decreased with increasing temperature. The mechanical properties of heat treated samples were better than those of unpressed control samples. The bending strength and modulus of elasticity of the LVLs manufactured from cold pressed and then heat treated lumbers were slightly lower than those of untreated woods. The colour values obtained from the heat treated wood samples showed a clear effect of the temperature on the colour changes.  相似文献   

11.
The effects of Zr addition on mechanical property in the aged Al–Mg–Si alloy exposed to thermal-resistant treatment (180–250 °C) have been studied by using both Brinell Hardness tests and tensile tests. The softening process at 180 °C and 230 °C has been investigated by transmission electron microscope (TEM). The Arrhenius Model is introduced to simulate the strength evolution in the thermal-resistant treatment. The results show that tensile strength and thermal-resistant property are improved by addition of Zr, and both the Brinell Hardness and Tensile Strength could maintain no less than 90% of their initial values when the alloy is exposed to heat treatment at 180 °C for 400 h and 230 °C for 2 h. The presence of rod-shaped phases and coarsening particles results in decreasing the hardness of the sample. The relationship between thermal-resistant life and temperature is derived by the Arrhenius Model. When the Al–Mg–Si–Zr alloy is heated at 130 °C, the duration described in the Arrhenius plot could reach to 40 years.  相似文献   

12.
Xenograft bone has been widely used as a bone grafting material because it gains advantages in biological and mechanical properties as compare with the use of an allograft bone. Heat-treatment of bone is recognized as one of the simple and practical methods to lower the human immunodeficiency virus (HIV) infection and overcome the risks of rejection and disease transfer during the bone transplantation. Therefore, understanding the change of bone’s organic matrix after heat treatment has become a significant topic. In this study, thermal gravimetric analysis (TGA) was used to investigate the condition of organic constituents of a bovine cortical bone. In order to well characterize the microstructural and mechanical property of the bone after heat treatment, nanoindention technique was also employed to measure the localized elastic modulus (E) and hardness (H) of its interstitial lamellae and osteons lamellae at the temperatures of 23 °C (RT), 37 °C, 90 °C, 120 °C and 160 °C, respectively.The TGA results demonstrated that heat-treated bones had three stages of weight loss. The first stage was the loss of water, which started from RT to 160 °C. Follow by a weight loss of organic constituents starting from 200 °C to 600 °C. Upon reaching 600 °C, the organic constituents were decomposed and mineral phase loss started taking place until 850 °C. From the nanoindentation results, it showed the values of E and H measured for the interstitial lamellae were higher than that of the osteons lamellae. This phenomenon indicates that the interstitial lamellae are stiffer and easy to be mineralized than osteons lamellae. For a specimen heat-treated at 90 °C, the values of E and H of interstitial lamellae and osteons lamellae were similar to a non-heat-treated specimen. For a specimen heat-treated at 120 °C, its interstitial lamellae had higher E and H values than osteons lamellae. When a specimen was heat-treated at 160 °C, both interstitial lamellae and osteons lamellae demonstrated a slight decrease of their E and H values. An ANOVA statistical analysis was used to analyze the difference in elastic properties and hardness in various temperature ranges.  相似文献   

13.
Plain carbon steels are not suitable for nitriding as they form an extremely brittle case that spalls off readily, and the hardness increment of the diffusion zone is small. In this research, the effect of plasma nitriding time and temperature variation on the microstructure of the pack cemented aluminized plain carbon steel is investigated. All samples were aluminized at 900 °C for 2 h; the aluminized samples were subsequently plasma nitrided at 500 °C, 550 °C and 600 °C for 2.5, 5, 7.5 and 10 h. The phases formed on the sample surface were detected by X-ray diffraction (XRD). The cross section and samples surface were investigated by optical and scanning electron microscopy (SEM). Microhardness test was conducted to determine hardness change from the surface to the sample core. Results showed that by aluminizing the steel, Fe3Al phases as well as Fe–Al solid solution were formed on the surface and some aluminum rich precipitates were formed in solid solution grain boundaries. Plasma nitriding of the aluminized layer caused the formation of aluminum and iron nitride (AlN, Fe4N) on the sample surface. Consequently, surface hardness was improved up to about eight times. By increasing the nitriding temperature and time, aluminum-rich precipitates dissociated. Moreover, due to the diffusion of nitrogen through aluminized region during ion nitriding, iron and aluminum nitrides were formed in aluminized grain boundaries. Increasing nitriding time and temperature lead to the growth of these nitrides in the grain boundaries of the substrate. This phenomenon results in the increment of sample hardness depth. Plasma nitriding of aluminized sample in low pressure chamber with nitrogen and hydrogen gas mixture reduced surface aluminum oxides which were formed in aluminizing stage.  相似文献   

14.
In this study, an attempt to investigate the role of isothermal aging on the microstructure and tribological characteristics of Co–28Cr–5Mo–0.3C alloy was made. Regarding the results, isothermal aging at 850 °C and 950 °C for at least 16 h contributed to the formation of lamellar-type carbides at the grain boundary regions. Moreover, at higher aging times (over 16 h), the amount of lamellar-type carbides decreased. The wear properties of as-cast and heat treated samples were determined at 0.5 ms−1 speed several under normal applied loads such as 50, 80, and 110 N. At the lowest applied load (50 N), the samples were isothermally aged at 850 °C for 8 and 16 h and also the ones were aged at 950 °C for 16 h had higher wear resistance probably due to more volume fraction of lamellar-type carbides when compared to as-cast and the other aged samples, but, at higher applied loads (80 and 110 N) due to the formation of adhesive oxide layer on the as-cast sample surface, the wear rate of as-cast samples is lower compared with all heat treated ones.  相似文献   

15.
In order to optimize an innovative two-stage process for preparing an iron-based friction material directly from vanadium-bearing titanomagnetite concentrates, this paper focuses on the effects of sintering process on the microstructures and properties of an iron-based friction material. On one hand, the samples were sintered at 900 °C, 950 °C, and 1000 °C for 3 h respectively; On the other hand, the samples were sintered at 1000 °C for 1 h, 2 h, 3 h, and 4 h respectively. As a result, after the samples were sintered at above 950 °C for more than 3 h, a lot of laminated microstructures appear in these samples owing to the formation of a large number of pearlites. Besides, the density, the hardness, and the friction coefficient of this material are positively correlated to the sintering temperature or the sintering time, and the wear rate of this material is negatively related to the sintering temperature or the sintering time. This study can contribute to the attainment of much clearer insight into the effects of sintering process and lay the foundation of practical application of this innovative two-stage process.  相似文献   

16.
The response of stainless maraging steel weldments to post-weld ageing treatment has been investigated. Post-weld ageing was performed at five different temperatures, viz., 420 °C, 460 °C, 500 °C, 540 °C, and 580 °C. Metallographic characterization of weldment revealed three zones, namely fusion zone, heat-affected zone (HAZ) and unaffected parent metal zone. Hardness and tensile properties were evaluated after ageing at different temperatures. Hardness in HAZ and fusion zone varied with ageing temperature differently from that of the parent metal; it became higher in HAZ and fusion zone than in parent metal zone above 420 °C. Among the applied ageing treatments, ageing at 460 °C achieved the highest tensile strength. A graph was constructed for determination of fracture location and post-weld heat treatment efficiency based on experimental results, using hardness ratio of HAZ to the treated parent material and hardness ratio of HAZ to the as-received parent material.  相似文献   

17.
In the present work, the influence of heating aging treatment (HAT) on the microstructure and mechanical properties of Al–Zn–Mg–Cu alloy was investigated. When the final aging temperature (FAT) was lower than 180 °C, the hardness increased with the decreasing of heating rate, however, in the case of the FAT was higher than 180 °C, the variation of hardness was opposite. The electrical conductivity of Al–Zn–Mg–Cu alloy increased with the decrease of heating rate regardless of FAT. The tensile strength, yield strength and conductivity of the Al alloy after (100–180 °C, 20 °C/h) HAT increased by 1.6%, 4.5% and 14.1% than that after T6 treatment, respectively. The precipitates sequence of HAT was coincident with that of isothermal aging, which is SSS  GP zone  η  η. With the increase of FAT and the decrease of heating rate, the fine precipitates became larger and the continuous η phase at grain boundary grew to be individual large precipitates. The HAT time was decreased about 80% than that for T6 treatment, indicating HAT could improve the mechanical properties, corrosion resistance and production efficiency with less energy consumption.  相似文献   

18.
NiFe-CNT and Ni3Fe-CNT nanocomposites were fabricated by high energy mechanical alloying method. X-ray diffraction (XRD) analysis, scanning electron microscopy (SEM) and optical microscopy were employed for evolution of phase composition, morphology and microstructure of the powder particles. Ball milled powders were heat treated at 500 °C for 1 h to release the milling induced stresses. Bulk samples were prepared by sintering of cold pressed (300 MPa) samples at 1040 °C for 1 h. XRD patterns of powders, as-milled and after annealing at 500 °C did not show any peak related to CNTs or excess phases due to the interaction between CNTs and matrix. SEM micrographs showed that the addition of CNTs caused a reduction of powder particles size. The hardness value of as-milled NiFe and Ni3Fe powders reach to 660 and 720 HV, respectively. According to optical microscopy evaluations, the amount and size of the porosities of the composites bulk samples decreased in comparison with matrix ones.  相似文献   

19.
Normally, increase in strength and wear resistance of tool steels is associated with a reduced ductility. However, deep cryotreatment (DCT) may be used to simultaneously increase tensile strength and hardness and improve ductility of tool steels. In this work, effects of different DCT cycles on mechanical properties of 1.2542 tool steel have been studied. Three sets of specimens were investigated: two sets of untreated specimens, for studying the effect of some hardening parameters on the metal properties, and a third set consisting of cryotreated specimens. Soaking and tempering temperatures were kept constant at −196 °C and 200 °C, respectively. Different cryotreatment cycles were implemented by varying soaking time (24, 36 and 48 h) and tempering duration (60, 120 and 180 min). In order to ensure optimum treatment conditions, time gaps between various treatment steps were kept to minimum. Results show that two cryotreatment cycles consisting of: (i) 36 h soaking at −196 °C and 1 h tempering at 200 °C, and (ii) 48 h soaking at −196 °C and 2 h tempering at 200 °C produce the best effects in the cryotreated 1.2542 tool steel specimens, namely 32–36% increase in tensile strength, 9–12% increase in hardness, and 12–35% improvement in ductility.  相似文献   

20.
In this work, several cycles of homogenization heat treatments were employed to improve continuous-annealing furnace roller fractures at Mobarakeh Steel Company. Previous studies revealed that roller fractures were caused by sigma phase embrittlement and an increase of precipitations in the microstructure. Therefore, impact samples were prepared from failed rollers and homogenization treatments were carried out at temperatures ranging from 950 to 1100 °C in increments of 50 °C for 2 h. After cooling the samples in different mediums (furnace, air, oil and water), the impact energy was experimentally determined. In order to investigate the microstructures, the sigma phase and precipitation contents, and fractured surfaces, optical microscopy metallography, X-ray and SEM examinations were performed respectively on fractured samples. The results of these investigations indicate that homogenization treatment at 1100 °C for 2 h, followed by cooling in air, resulted in a significant increase in impact energy, a decrease in sigma phase and other precipitation contents, and produced a ductile fracture surface.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号