首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
Nanostructured Al2024–multiwall carbon nanotubes (MWCNTs) composites were produced using optimized mechanical milling and hot pressing methods. Nanostructured Al2024 powder was first prepared through 30 h mechanical milling of the alloy powder. MWCNTs up to 3 vol.% were added to the milled Al2024 powder and milled for different times. Differential thermal analysis (DTA) and X-ray diffraction (XRD) were used to assess the structural changes and thermal behavior during mechanical milling and hot pressing. Hardness and compression tests were applied on bulk samples to evaluate their mechanical properties. Mechanical milling applied on Al2024 powders for 30 h resulted in the grain refinement to ~30 nm. DTA analysis showed an endothermic peak at ~632 °C due to Al2024 melting and an exothermic peak between 645 and 658 °C related to Al and MWCNTs reaction. Mechanical milling of nanocomposite powder for 4 h and following hot pressing at 500 °C under a pressure of 250 MPa for 0.5 h were selected as optimized conditions for bulk nanocomposite preparation. With MWCNTs addition up to 2 vol.%, relative density remained at 98%, and hardness increased to 245 HV. Compressive strength of nanocomposites found a maximum value of 810 MPa at 2 vol.% MWCNTs addition which is 78%, 34% and 12% greater than that for Al2024–O, Al2024–T6 and nanostructured Al2024, respectively.  相似文献   

2.
Friction Spot Joining is a promising alternative joining technology for polymer–metal hybrid structures. In this work, the feasibility of Friction Spot Joining of aluminum AA2024-T3 (bare and alclad)/carbon-fiber reinforced poly(phenylene sulfide) is reported. The process temperature and the microstructure of the joints were investigated. Lap shear tensile strength as high as 27 MPa was achieved by using aluminum bare specimens. Sand blasting was also performed as an effective mechanical surface pre-treatment on aluminum surfaces, which resulted in higher surface roughness and accordingly improved mechanical performance for the selected conditions. In addition, the alclad specimens exhibited promising mechanical performance (lap shear strength of up to 43 MPa) that justifies further investigations. Finally, the bonding and failure mechanisms of the joints are briefly discussed.  相似文献   

3.
NiCoCrAlY coating was deposited on Superfer 800H superalloy with cold spray process to reduce the degradation rate of substrate superalloy in actual medical waste incineration environment. Erosion–corrosion performance of uncoated and cold sprayed superalloy was evaluated in the secondary chamber of medical waste incinerator. The degradation rate of the specimens was assessed by measuring the thickness loss of the specimen after cyclic exposure for 1000 h in medical waste incineration environment. Average degradation rate for uncoated and cold sprayed superalloy was found to be 157.95 mpy and 36.56 mpy respectively. The better performance of cold spray coated specimen might be attributed to the formation of protective Al2O3 scale at the top of surface and dense structure of the deposit coating.  相似文献   

4.
SAE 9260 spring steel specimens after enduring 50% of their mean fatigue life were subjected to laser shock peening using an in-house developed 2.5 J/7 ns pulsed Neodymium-doped Yttrium Aluminum Garnet (Nd:YAG) laser for studying their fatigue life enhancement. In the investigated range of process parameters, laser shock peening resulted in the extension of fatigue life of these partly fatigue damaged specimens by more than 15 times. Contributing factors for the enhanced fatigue life of laser peened specimens are: about 400 μm thick compressed surface layer with magnitude of surface stress in the range of −600 to −700 MPa, about 20% increase in surface hardness and unaltered surface finish. For laser peening of ground steel surface, an adhesive-backed black polyvinyl chloride (PVC) tape has been found to be a superior sacrificial coating than conventionally used black paint. The effect of repeated laser peening treatment was studied to repair locally surface melted regions and the treatment has been found to be effective in re-establishing desired compressive stress pattern on the erstwhile tensile-stressed surface.  相似文献   

5.
Fatigue properties of two case hardening steels after carburization have been investigated by means of rotating bending fatigue tests and rolling contact fatigue tests. Results show that the steel with higher Al and N contents has higher rotating bending fatigue limit and rolling contact fatigue limit, increasing from 865 to 950 MPa and from 3575 to 3725 MPa, respectively. It is also shown that the steel with higher Al and N contents has finer prior austenite grain sizes and higher hardness in the carburized case. Scanning electron micrographic observations on the fractured surface of specimens for rotating bending fatigue tests show that fatigue crack usually initiated from oxide inclusions and propagated along prior austenite grain boundaries, indicating that the finer grain size and higher hardness in the carburized case of the steel with higher Al and N contents can contribute to its higher fatigue properties.  相似文献   

6.
Micro-arc oxidation (MAO), a novel coating method capable of depositing compact, ultra-hard ceramic composite coatings on Al and its alloys, is applied to heat sink surfaces. A micro-porous Al2O3 layer was synthesized on 6061 Al-Alloy (MAO–Al) using the MAO technique. The microstructure, shear strength and fracture of Al/Al, MAO–Al/MAO–Al, and Al/MAO–Al joints were determined after direct active soldering in air with the Sn3.5Ag4Ti(Ce) active solder at 250 °C for 30 s. During active soldering, Al dissolves into SAT solder to form a coarse Al–Ag–Sn solid solution around the solder. Also, the active element Ti concentrates to and reacts with the MAO–Al layer to form both Ti-oxidized (e.g., TiO and TiO2) or rich-Ti(Al,Sn)3, and subsequently Ag3Sn nanoparticles are adsorbed at the solder/MAO–Al interfaces. The shear-tested bonding strengths were 15.3 ± 1.38 MPa for Al/Al, 10.45 ± 1.53 MPa for MAO–Al/Al, and 8.25 ± 1.53 MPa for MAO–Al/MAO–Al joints. In the Al/Al specimen, the fracture occurred in Al–Ag–Sn compounds of the active matrix after shear testing. In the MAO–Al/MAO–Al and MAO–Al/Al specimens, the fracture occurred in the MAO–Al/active solder interface.  相似文献   

7.
Here we present recent progress on α-Al dendrite-reinforced joints of 2024 aluminum produced by the ultrasonic-assisted soldering method. In ultrasonic-assisted soldering of Al2024, pure Sn was utilized as a filler metal, the vibration frequency was 21 kHz, and the temperature was 300 °C. Interestingly, the aluminum content in the bond was up to 3.2 mass%, which is much higher than the solubility limit of aluminum in Sn at 300 °C. The evolution of the microstructure of the aluminum dendrites in bonds with different ultrasonic time was observed to investigate the dissolution behavior of 2024 Al in Sn under ultrasonic conditions. A migration model of aluminum dendrites in the bonds is proposed, which enables control of the extent of reinforcing α-Al dendrites by varying the ultrasonic time. The shear strength of the α-Al dendrite-reinforced joints is improved significantly, with the maximum shear strength approaching 60 MPa.  相似文献   

8.
In view of the requirement of large cold rolling deformation and bonding pressure in the conventional superplastic diffusion bonding of 2205 duplex stainless steel, a novel method of introducing thermal cycling into the process was proposed. During the thermal cycling process, due to the change of temperature, surface chemical activity of 2205 duplex stainless steel was improved, activity of atoms and grain boundaries were improved, and the recrystallized grains were refined. The shear bond strength of joint prepared in the mode of thermal cycling using specimens with the cold roll reduction of 60% was 15 MPa higher than that of conventional bonding using specimens with the cold roll reduction of 85%. Compared to the shear bond strength of 430 MPa under the specific pressure of 10 MPa after conventional bonding, shear bond strength of 623 MPa was obtained under the condition of Tmax = 1000 °C, Tmin = 900 °C, cycle number of heating and cooling N = 3, and specific pressure P = 5 MPa.  相似文献   

9.
In this paper, the Taguchi method was employed to optimize the spray parameters (spray distance, oxygen flow and kerosene flow) to achieve the highest hardness and, in turn, the best wear resistance of the high-velocity oxygen-fuel (HVOF) sprayed nanostructured WC–10Co–4Cr coating by investigating the correlation between the spray parameters and the hardness. The important sequence of spray parameters on the hardness of the coatings is kerosene flow > oxygen flow > spray distance, and the kerosene flow is the only significant factor. The optimal spray parameter (OSP) for the coating is obtained by optimizing hardness (330 mm for the spray distance, 2000 scfh for the oxygen flow and 6.0 gph for the kerosene flow). The coating deposited under the OSP with low porosity and high microhardness consists predominately of WC and a certain amount of W2C phases. The coating deposited under the OSP exhibits better wear resistance compared with the cold work die steel Cr12MoV. The material removal of the coating is the extrusion of the ductile Co–Cr matrix followed by the crack and the removal of the hard WC particles.  相似文献   

10.
In this experimental study, the tribological behavior of Al 2024–5 wt.% SiC–X wt.% graphite (X = 5 and 10) hybrid nano-composites was produced using powder metallurgy (P/M) technique. All specimens were prepared by mechanical milling of Al 2024 and SiC–Gr nano-composite powders, followed by a blend–press–sinter methodology. Pin on disc type apparatus has been used for determining the wear loss. The sintered samples have been characterized by XRD. Wear mechanisms are discussed based on scanning electron microscopy observations of worn surface and wear debris morphology. The hardness and wear resistance of the hybrid nano-composites were increased considerably by increasing the reinforcement content. The nano-composite with 5 wt.% SiC and 10 wt.% Gr showed the greatest improvement in tribological performance. Primary wear mechanisms for hybrid nano-composites were determined to be formation of lubricating layer on the surface of samples. The overall results revealed that hybrid aluminium nano-composites can be considered as an outstanding material where high strength and wear-resistant components are of major importance, particularly structural applications in the aerospace, automotive and military industries.  相似文献   

11.
Surface aluminizing on Ti–6Al–4V alloy was successfully performed via a novel solid-state method of multi-pass friction-stir lap welding (FSLW). The process principles are elucidated. The aluminized coating was tailored as ∼500 μm in thickness after preparation and milling treatment to remove the redundant pure Al. No annealing treatment was performed after the FSLW preparation. The as-processed Ti/Al interlayer was Ti-rich in chemical composition, more than 60 μm in thickness, and had an interval banding structure, due to the FSLW thermal–mechanical effects. Oxidation tests for bare TC4 and aluminized specimens were conducted at 700 °C. Surface morphologies, phases and interlayer evolutions of the oxidized specimens were investigated. The diffusion and/or possible reaction of the Ti/Al interlayer occurred simultaneity corresponding to the oxidation behaviors in the near-surface layer. The oxidation resistant roles of the aluminide interlayer and the upper abundant Al coating produced via the method were discussed. Abundant Al content in the coating of significant thickness benefited the anti-oxidation performance and forming of Ti/Al interlayer. The aluminide interlayer of considerable thickness, with composition gradients and good density at Ti/Al interface location, played a main protection role against oxidation to Ti-substrate.  相似文献   

12.
The application of ultrasonic frequency (20 kHz) loading to test fatigue and fracture mechanical properties of materials is briefly reviewed and recent investigations on high strength aluminium alloys are reported. Very high cycle endurance tests and near threshold crack growth experiments were performed with the 2024-T351 aluminium alloy. Lifetimes are approximately 10–100 times lower, if cycled in distilled water instead of ambient air. Fatigue experiments under randomly varying loads showed that linear damage summation calculations overestimated lifetimes by approximately a factor 2. Fracture mechanics studies in ambient air, dry air and in vacuum served to investigate the role of air humidity on near threshold fatigue crack growth at ultrasonic frequency. The threshold value was 2.1 MPa√m in ambient air and 3.3 MPa√m in vacuum. The aluminium alloy AlZnMgCu1.5-T66 and the aluminiumoxyde particle reinforced alloy 6061-T6 were tested at 100 Hz and 20 kHz to investigate frequency influences on high cycle fatigue properties, and similar lifetimes were found at both frequencies.  相似文献   

13.
The effects of prior oxidation on the room temperature fatigue life of coarse-grained Ni-based superalloy, RR1000, have been investigated. High cycle fatigue tests were conducted, on both machined and pre-oxidised testpieces, at room temperature at an R ratio of 0.1. The oxidation damage was produced by pre-exposures at 700 °C for either 100 or 2000 h. Pre-oxidised testpieces tended to fail with shorter fatigue lives than those obtained from the as-machined testpieces although they were also observed to outperform the as-machined test pieces at peak stress levels around 900 MPa. The chromia scale and intergranular alumina intrusions formed during pre-oxidation are prone to crack under fatigue loading leading to early crack nucleation and an associated reduction in fatigue life. This has been confirmed to be the case both below and above a peak stress level of ∼900 MPa. The better fatigue performance of the pre-oxidised specimens around this stress level is attributed to plastic yielding of the weaker γ′ denuded zone, which effectively eases the stress concentration introduced by the cracking of the chromia scale and intergranular internal oxides. This γ′ denuded zone is also a product of pre-oxidation and develops as a result of the selective oxidation of Al and Ti. Over a limited stress range, its presence confers a beneficial effect of oxidation on fatigue life.  相似文献   

14.
In this study, the fatigue behavior of aluminum alloy 2024T3 v-notched specimens repaired with composite patch under block loading was analyzed experimentally. Two loading blocks were applied: increasing and decreasing at two stress ratio: R = 0 and R = 0.1. Failed samples were examined under scanning electron microscope at different magnifications to analyze their fractured surfaces. The obtained results show that under increasing blocks, the crack growth is accelerated for both repaired and unrepaired specimens. This is attributed to the increase of the loading amplitude in the second block. A retardation effect was observed for decreasing blocks loading in unrepaired specimens. However, this retardation effect is attenuated by the presence of the patch which lead to lower fatigue life for repaired specimens.  相似文献   

15.
Permanent mold (PM) and high pressure die cast (HPDC) AlMg5Si2Mn are employed to investigate the microstructure, fatigue strength and corrosion resistance. Results indicated that the mechanical properties (Rm, R0.2 and δ) of HPDC specimens (314 MPa, 189 MPa and 7.3%) are significantly better than those of PM specimens (160 MPa, 111 MPa and 2.5%) due to the finer grain size and less cast defects. Fatigue cracks of PM samples dominantly initiated from shrinkage pores and obscure fatigue striations are observed in crack growth region. Corrosion and pitting potentials of PM and HPDC AlMg5Si2Mn alloy are around −1250 mV, −760 mV and −1220 mV, −690 mV respectively. Numerous pits are observed around the grain boundaries because the corrosion potential of Mg2Si is more anodic than that of α-Al matrix. In addition, the superior corrosion resistance of HPDC samples can be attributed to the fine grain size and the high boundary density which improved the formation of oxide layer on the surface and prevented further corrosion.  相似文献   

16.
Microstructure irreversibility plays a major role in the gigacycle fatigue crack initiation. Surface Persistent Slip Bands (PSB) formation on Copper and its alloy was well studied by Mughrabi et al. as typical fatigue crack nucleation in the very high cycle fatigue regime. In the present paper, Armco iron sheet specimens (1 mm thickness) were tested under ultrasonic frequency fatigue loading in tension–compression (R = −1). The test on the thin sheets has required a new design of specimen and new attachment of specimen. After gigacycle fatigue testing, the surface appearance was observed by optical and Scanning Electron Microscope (SEM). Below about 88 MPa stress, there is no PSBs even after fatigue cycle up to 5 × 109. With a sufficient stress (above 88 MPa), PSBs in the ferrite grain was observed by optic microscope after 108 cycles loading. Investigation with the SEM shows that the PSB can appear in the body-centered cubic crystal in the gigacycle fatigue regime. Because of the grain boundary, however, the local PSB did not continually progress to the grain beside even after 109 cycles when the stress remained at the low level.  相似文献   

17.
In this paper, the fatigue behaviour of Al 7075-T6 fastener holes with symmetrical through slits was studied. The holes were coated with electroless nickel (EN) plating with a high phosphorous content of 10–13 wt% and a thickness of 40 μm. Uncoated open-hole, EN coated open-hole, uncoated bolted hole and EN coated bolted hole specimens were fatigue tested. Bolted samples were clamped with a high tightening torque of 7 Nm. The established S–N curves showed 282–1348% improvements in the fatigue life due to the combined effect of EN coating and bolt clamping, depending on the level of maximum alternating stress. Excellent adhesion was observed between the coating and the aluminium substrate along the crack path. Tensile tests results showed a considerable reduction of 54% in the ductility of the coated material while both the yield and ultimate strengths were found to slightly increase by approximately 6% in comparison with the uncoated aluminium alloy.  相似文献   

18.
Tension–tension fatigue properties of SiC fiber reinforced Ti–6Al–4V matrix composite (SiCf/Ti–6Al–4V) at room temperature were investigated. Fatigue tests were conducted under a load-controlled mode with a stress ratio 0.1 and a frequency 10 Hz under a maximum applied stress ranging from 600 to 1200 MPa. The relationship between the applied stress and fatigue life was determined and fracture surfaces were examined to study the fatigue damage and fracture failure mechanisms using SEM. The results show that, the fatigue life of the SiCf/Ti–6Al–4V composite decreases substantially in proportion to the increase in maximum applied stress. Moreover, in the medium and high life range, the relationship between the maximum applied stress and cycles to failure in the semi-logarithmic system could be fitted as a linear equation: Smax/μ = 1.381  0.152 × lgNf. Fractographic analysis revealed that fatigue fracture surfaces consist of a fatigued region and a fast fracture region. The fraction of the fatigued region with respect to the total fracture surface decreases with the increase of the applied maximum stresses.  相似文献   

19.
The effect of residual stresses on the reverse bending fatigue strength of steel sheets with punched holes was studied for steels with tensile strength grades of 540 MPa and 780 MPa. Tensile and compressive residual stresses were induced around the punched holes. Heat treatment of the specimens with punched holes at 873 K for 1 h decreased the residual stresses around the holes and improved the fatigue strength of the sheets. This result means that the tensile residual stresses induced in the sidewalls of the holes and near the hole edges by punching reduced fatigue strength. The effect of the residual stresses on the fatigue limits of the edges was estimated by the modified Goodman relation using the residual stresses after cyclic loading and the ultimate tensile strength at the fatigue crack initiation sites.  相似文献   

20.
This study was undertaken to investigate the influence of Al–5Ti–1B master alloy and modified strain-induced melt activation process on the structural characteristics, mechanical properties and dry sliding wear behavior of Al–12Zn–3Mg–2.5Cu aluminum alloy. The optimum amount of Ti containing master alloy for proper grain refining was selected as 2 wt.%. The alloy was produced by modified strain-induced melt activation (SIMA) process. Reheating condition to obtain a fine globular microstructure was optimized. The optimum temperature and time in strain-induced melt activation process are 575 °C and 20 min, respectively. T6 heat treatment was applied for all specimens before tensile testing. Significant improvements in mechanical properties were obtained with the addition of grain refiner combined with T6 heat treatment. After the T6 heat treatment, the average tensile strength increased from 283 MPa to 587 MPa and 252 MPa to 564 MPa for samples refined with 2 wt.% Al–5Ti–1B before and after strain-induced melt activation process, respectively. Dry sliding wear performance of the alloy was examined in normal atmospheric conditions. The experimental results showed that the T6 heat treatment considerably improved the resistance of Al–12Zn–3Mg–2.5Cu aluminum alloy to the dry sliding wear.The results showed that ultimate strength and dry sliding wear performance of globular microstructure specimens was a lower value than that of Ti-refined specimens without strain-induced melt activation process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号