首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
针对由具有无功调节能力的双馈风机DFIG(doubly-fed induction generator)组成的海上风电场,结合海上风电场特点和无功补偿配置情况,在考虑风电场内机组crowbar动作情况、机端电压和因尾流效应导致的风速差异对双馈风机动态无功极限影响的基础上,提出在电网电压跌落期间通过调节转子电流,充分利用场内双馈风机的无功协调控制能力进行最大无功支撑实现低电压穿越;在电网电压恢复阶段,控制场内双馈风机快速输出感性无功抑制电网电压骤升,提高了低穿恢复阶段的过电压抑制能力。基于DIgSILENT/PowerFactory仿真平台,搭建风电场协调控制模型验证所提控制策略的效果。仿真结果表明,所提控制策略在电压低跌落状态下可以充分发挥风电机组的无功出力能力,协助电网电压快速恢复,有效提高故障电网的暂态电压水平。  相似文献   

2.
结合风电机组的结构和并网原理,对直驱风电机组提出了"卸荷电路+无功补偿"的低电压穿越改进控制方法,对双馈风电机组采用了DC-Chopper和SDBR(series dynamic braking resistor)代替Crowbar的低电压穿越改进控制方法。以PSCAD为平台分别构建了具备低电压穿越能力的直驱风电机组和双馈风电机组的并网仿真模型;结合风电并网技术规程,采用电压跌落器仿真验证了直驱、双馈风电机组在电网电压跌落下的低电压穿越能力。参照新疆达坂城实际风电场群接入系统方案,构建了包含具备低电压穿越能力的直驱、双馈风电机组的集群风电场仿真算例,研究了风电场送出线故障、集群风电场送出线电压跌落、系统线路电压跌落时风电场群故障穿越特性。仿真结果表明:集群接入风电场送出线电压跌落会影响相邻风电场及系统的电压和频率,故障结束后整个风电接入系统可以在风电接入技术规程要求的时间内恢复至稳态运行状态。研究成果有助于分析风电大规模集群接入系统的运行特性,提高电力系统对风电的接纳能力。  相似文献   

3.
双馈风电机组高电压穿越控制策略与试验   总被引:2,自引:0,他引:2  
针对风电的高电压脱网问题,介绍了主要风电并网导则对高电压穿越的要求,对比分析了双馈风电机组低电压和高电压的电磁暂态特性,论证了双馈风电机组1.3倍额定电压的高电压穿越过程全程可控的可行性。提出了一种基于双馈变流器动态无功控制的高电压穿越控制策略和风电机组主控系统与变流器协同控制完成高电压穿越的实现方法,避免了Crowbar或Chopper保护动作对高电压穿越特性的不利影响。在MATLAB/Simulink中建立了2 MW双馈风电机组高电压穿越仿真模型,实现了高电压穿越全过程仿真;利用高电压发生装置,在2 MW双馈风电机组上进行了高电压穿越现场试验,试验结果表明了理论与仿真分析的准确性及控制策略的有效性。  相似文献   

4.
双馈风电机组的低电压穿越通常采用在转子侧加撬棒保护电路(Crowbar)的方法。为有效评估双馈风电机组的故障暂态行为,首先分析了电网故障期间撬棒投入后的机组定转子电流特性,讨论了撬棒阻值的取值范围。在此基础上,以PSCAD/EMTDC为平台,建立包含撬棒保护电路的双馈风力发电机组模型,分析了2种撬棒控制策略下的机组动态响应,提出了一个评价机组动态响应的指标函数,对仿真结果比较分析,得出了双馈风电机组在不同电压跌落情况下实现低电压穿越的撬棒优化控制策略。  相似文献   

5.
由于风电场群内各风电场的暂态特性存在较大差异,且各风电场及系统间存在较强的耦合关系,这些因素增加了风电场群接入后电力系统故障分析的复杂度。基于变流器的输入-输出外特性等值了变流器的数学模型,进一步给出了计及变流器控制影响的双馈风电机组暂态模型,分析了低电压穿越控制策略对短路电流的影响机理,并建立了双馈风电机组的短路电流计算模型。分析了故障期间风电场间的相互影响机理,提出了双馈风电场群的短路电流计算方法。采用RTDS建立含双馈风电机组实际控制器的物理实验平台,验证了所提出的双馈风电场群短路电流计算方法的准确性。在此基础上对双馈风电场群接入后的电网故障分析方法进行了探讨与分析。  相似文献   

6.
大规模海上风电接入电网给电网安全运行和管理带来了较大的挑战,新的电网导则要求风电机组应保证具备低电压穿越(Low voltage ride through,LVRT)能力。考虑到动态电压恢复器(dynamic voltage restorer,DVR) 具有能在短时间内快速准确进行电压补偿的优势,本文提出了基于动态电压恢复器的双馈风电机组故障穿越方案。针对风电机组特点进行系统建模,根据DVR的控制特性,提出一种基于坐标变换的双Q-P理论的DVR控制算法,该算法可以补偿瞬时电压扰动,并且能有效改善动态电压恢复器的补偿性能。利用PSCAD/EMTDC仿真软件建立仿真平台,仿真结果表明,在海上风电场传输电能至电网过程中出现严重短路故障时,DVR能快速检测电压变化并且准确补偿所需电压,获得理想的瞬态特性,进而改善了风电机组的低电压穿越性能。  相似文献   

7.
为解决混合型风电场低穿措施复杂难以协同及低穿后故障特性难以分析的问题,提出双馈风电机组应用阻容式撬棒以改善低电压穿越期间混合型风电场的频偏及无功特性。首先建立双馈风电机组群与永磁直驱风力发电机组群模型,通过分群聚合等效的方法建立混合型风电场简化等效模型。在此基础上,分析计及阻容撬棒的混合型风电场故障期间各类型风电机组的无功调节能力及调节特性。据此制定混合型风电场的无功协同控制策略以优化低电压穿越期间无功输出能力,分析采用协同控制策略后混合型风电场的短路特性,并对短路电流进行解析。最后基于PSCAD/EMTDC仿真软件建立了混合型风电场仿真模型,对协同策略的有效性及故障电流表达式的正确性进行仿真验证。  相似文献   

8.
针对故障期间定子Crowbar阻抗计算仅考虑抑制转子侧过电流而忽略风机转速加速问题,提出了一种考虑转矩失衡的定子Crowbar双馈风电机组低电压穿越技术。电网发生故障时,考虑系统间存在不平衡转矩,求解了使风电系统稳定的临界定子Crowbar电路阻抗并结合定子电流跟踪控制策略间接控制风电机组输出功率。仿真分析表明,所提控制方案在确保实现双馈风电机组低电压穿越的同时,能够有效地降低转子暂态电流、超速风险及稳定直流母线电压,并向电网提供无功功率及故障后较快的有功功率恢复速度。  相似文献   

9.
基于撬棒保护的双馈风电机组三相对称短路电流特性   总被引:5,自引:0,他引:5  
双馈感应发电机在其并网点电压跌落较深时必须具备低电压穿越能力,而撬棒(crowbar)保护电路是目前运用较为广泛的一种低电压穿越方式。分析了装设有撬棒保护电路的双馈风电机组机端三相对称短路情况下的短路电流特性,通过仿真软件PSCAD/EMTDC研究了影响双馈风电机组输出短路电流的因素,包括撬棒电阻、直流母线电压和网侧变流器,推导了双馈风电机组在额定运行工况下定、转子短路电流的近似求解公式。最后,在考虑定转子磁链耦合作用的基础上给出了一种等效阻抗电压源模型,有利于接有分布式风电机组的配电网保护配置的进一步研究。  相似文献   

10.
风电机组的电网电压故障穿越能力是风机重要的并网性能评价指标。随着风机低电压穿越能力的深入研究,电网电压骤升成了威胁风机安全运行的因素。为了研究双馈风电机组在电网电压骤升下的特性及不脱网运行控制策略,分析了电网电压骤升时双馈感应发电机的电磁暂态过渡过程。结合现场运行风电机组的实际特性,提出一种易于工程实现的双馈风电机组高电压穿越控制策略。该控制策略不需更改原风机一次回路结构,只对双馈风机的发电机侧控制逻辑进行修改,即可实现双馈风电机组在电网电压骤升时不脱网运行,保障机组安全与电网稳定。最后通过仿真验证了控制策略的可行性。  相似文献   

11.
双馈风电机组低电压穿越特性的试验研究   总被引:4,自引:1,他引:3  
低电压穿越能力正逐渐成为大型并网风电机组的必备功能之一,要求风电机组在电网电压跌落发生时保持并网,故障消除后快速恢复正常运行。在分析双馈机组电压跌落特性的基础上,采用了转子主动式Crowbar电路和直流侧卸荷电路相结合的方法来实现双馈风电机组的低电压穿越功能,讨论了具体的低电压穿越控制策略,通过仿真验证了电路结构和控制策略的正确性。在实验室10 kW双馈机组实验平台上,采用电压跌落发生器模拟电网电压跌落故障,进行了电网电压跌落至额定电压20%时不同持续时间的测试,证实了所采用的低电压穿越控制策略的有效性。  相似文献   

12.
在电压跌落程度不大的远区非严重故障情况下,低电压穿越控制策略的采用使得双馈风电机组的转子绕组仍由变频器进行励磁。因此,非严重故障情况下双馈风电机组的故障电流特性取决于低电压穿越控制策略下变频器的响应特性。针对此,本文分析了低电压穿越控制策略下转子侧变流器的故障响应特性,得到了转子绕组故障电流的统一计算模型。在此基础上,对非严重故障情况下双馈风电机组的定子绕组故障电流特性进行了研究,建立了定子绕组故障电流的统一解析表达式。数字仿真结果证明了理论分析的正确性。  相似文献   

13.
含不同风电机组的风电电网仿真研究   总被引:8,自引:3,他引:5  
邢文琦  晁勤 《电网技术》2009,33(7):99-102
为了研究包含恒速异步风力发电机和双馈异步风力发电机的风电场对电网的影响,应用Matlab 7.0建立了含不同风电机组的风电场动态模型。分析了风电场对电网暂态稳定性的影响,风电机组电压恢复情况,有功、无功变化情况,以及不同风电机组的低电压穿越能力。仿真结果表明:双馈异步风力发电机变速平稳、低电压穿越能力较强,有利于优化电能质量;当电网发生故障时,应针对不同的风电机组采取不同的控制策略以提高电力系统稳定性。  相似文献   

14.
为研究风电机组与系统的交互影响,建立了低电压故障下双馈式风电机组(doubly-fed induction generator,DFIG)的保护控制措施与系统动态特性之间的联系,分别从机组安全约束角度和系统区域电压稳定角度,探讨了双馈式风电机组撬棒(crowbar)保护电阻取值、投切控制策略,在分析电机发生短路故障后撬棒保护投入期间电气量特性基础上,给出了双馈电机投入撬棒后定转子电流峰值估算式以及撬棒电阻取值约束式。算例从系统角度分析了不同故障类型、不同投切时间和不同撬棒阻值情况下大范围投入撬棒保护后对风电场周边区域电压稳定的影响,并分析了多风电场在电网大扰动后投入撬棒的相互影响。算例结果表明,选择合适的撬棒阻值和投切控制策略可以提高机组低电压穿越(low voltage ride through,LVRT)能力,并降低风电场在撬棒保护大范围投入后对系统电压稳定的不良影响。  相似文献   

15.
随着风电机组容量的逐年增大,为减少大规模风电接入系统对电网的影响,对风电提出了新要求,即风电机组具有一定的低电压穿越能力。介绍了变速恒频双馈风电机组的基本结构,建立了双馈风电机组动态数学模型。以Matlab/Simulink为仿真平台搭建了系统仿真模型,结合风电场低电压穿越能力要求的规定,针对不同电网电压跌落的情况下,仿真研究了变速恒频风电机组的低电压穿越能力,结果表明:双馈风电机组在电网电压跌落时满足继续并网运行的条件,且为电网电压恢复提供了无功,提供的无功功率大小与电网电压跌落程度有关。  相似文献   

16.
在江苏地区各风电场相关参数及低电压穿越能力测试数据的基础上,在DIgSILENT中对基于双馈风电机组的大规模风电场进行建模,可详细描述风电场内各风机低电压穿越的动态特性。在不同的电压跌落场景下,对风电场内部各风电机组的不同故障反应特性进行比较分析,确定整个风电场的低电压穿越能力并得出规律性结论。通过严重故障仿真得到风电场内部风机的脱网时序分布,分析了风机之间交互影响机理与连锁脱网的详细过程。最后,提出适当提高撬棒保护整定值、网侧变换器灵活运行和采用SVC等装置进行动态无功补偿可以提高风电场低电压穿越能力。  相似文献   

17.
风力发电机并网后的电网电压和功率分析   总被引:2,自引:1,他引:1  
对用鼠笼式感应发电机发电的恒速风力机和用双馈感应发电机发电的变速风力机的工作原理及其在电网的接入方式、接入风力发电机后的电网电压和功率进行了分析,对不同风电穿透力下电压对风速扰动的响应进行了讨论,并对电网故障时电压变化及风电场低压穿越技术进行了研究。采用理论分析与计算机仿真方法得到了相关结论:不同风力机机型对电网的作用不同;鼠笼式风电机组构成的风电场穿透功率大于10%以后会引起公共连接点处电压偏移超过10%;电网故障后双馈风电机组和鼠笼式风电机组电压恢复能力不同,在风电场加入STATCOM后,可以实现低电压穿越。  相似文献   

18.
双馈风电机组复杂的故障电流特性使得应用于双馈风电场联络线上的传统选相元件性能严重劣化,难以满足双馈风电场联络线保护与重合闸的选相需求。根据双馈风电机组的低电压穿越控制策略,分析了传统选相元件应用于双馈风电场联络线面临的缺陷。提出了基于相间电压突变量和相电压突变量幅值比较的故障选相新方法。根据双馈风电场侧保护安装处相电压突变量与相间电压突变量之间的比例关系,构建了故障相别选择系数,并利用故障相别选择系数在不同电网故障类型下的特征,以实现故障选相。仿真结果表明,所提选相元件可以可靠地选出故障相。  相似文献   

19.
针对弱电网下双馈风电并网系统的稳定性问题,文中提出了一种基于电网电压扰动补偿的双馈风电机组补偿控制策略。首先,在同步旋转坐标系下建立双馈风电机组,包括转子侧变换器和网侧变换器的统一阻抗模型。然后,基于所建立的阻抗模型分析了并网点电压扰动到控制器输出的传递关系,分别在转子侧电流环和网侧电流环引入了电压扰动补偿对变换器进行改进控制,并通过广义奈奎斯特判据证明了该方法能有效提高双馈风电机组在弱电网下的并网稳定性。理论分析表明,基于并网点电压扰动补偿的转子侧和网侧补偿控制能很好地改善双馈风电机组的输出阻抗特性,从而提高其在弱电网下的稳定性。最后,通过仿真分析验证了该补偿控制方法的有效性。  相似文献   

20.
基于VSC-HVDC的风力发电系统低电压穿越协调控制   总被引:3,自引:0,他引:3  
提出一种适用于通过VSC-HVDC系统并网风电场的低电压穿越协调控制策略。建立高压直流输电线路和风电场的模型,分析电网故障期间系统的工作原理。低电压穿越期间,通过HVDC两端变流站提供无功支持,并采用基于电压控制的快速功率降低算法控制风电场馈入功率,维持直流系统功率平衡;对风电机组功率控制进行改进,提出分层控制与HVDC控制相协调,保持风电机组的电压稳定。算例仿真结果验证了该控制策略的快速性和有效性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号