首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到15条相似文献,搜索用时 15 毫秒
1.
Coupling reaction and separation in a membrane reactor improves the reactor efficiency and reduces purification cost in the next stages. In this work a novel reactor consisting two membrane layers has been proposed for simultaneous hydrogen permeation to reaction zone and water vapor removal from reaction zone in the methanol synthesis reactor. In this configuration conventional methanol reactor is supported by a Pd/Ag membrane layer for hydrogen permeation and alumina-silica composite membrane layer for water vapor removal from reaction zone. In this reactor syngas is fed to the reaction zone that is surrounded with hydrogen-permselective membrane tube. The water vapor-permselective membrane tube is placed in the reaction zone. A steady state heterogeneous one-dimensional mathematical model is developed for simulation of the proposed reactor. To verify the accuracy of the model, simulation results of the conventional reactor is compared with the available plant data. The membrane fixed bed reactor benefits are higher methanol production rate, higher quality of outlet product and consequently lower cost in product purification stage. This configuration has enhanced the methanol yield by 10.02% compared with industrial reactor. Experimental proof-of-concept is needed to establish the safe operation of the proposed configuration.  相似文献   

2.
/ 《Catalysis Today》2005,104(2-4):238-243
Isobutane dehydrogenation to isobutene has been investigated experimentally and by modelling for a membrane reactor and a fixed bed reactor under similar operating conditions using a Pt/alumina catalyst. Reaction kinetics were obtained from experiments in the fixed bed reactor. Comparative tests showed that the membrane reactor achieved much higher yields of isobutene and also gave higher selectivities, with less by-products than the fixed bed system.

Using the kinetic data, the simulations gave good agreement with the fixed bed experiments, but over predicted the yields from the membrane reactor. Analysis of these results indicated that in the membrane reactor the hydrogen permeability of the membrane was much greater than its hydrogen transfer requirement and that the reaction rate was the determining factor for isobutene yield.  相似文献   


3.
A novel inorganic hollow fiber membrane reactor (iHFMR) has been developed and applied to the catalytic dehydrogenation of propane to propene. Alumina hollow fiber substrates, prepared by a phase inversion/sintering method, possess a unique asymmetric structure that can be characterized by a very porous inner surface from which finger-like voids extend across ∼80% of the fiber cross-section with the remaining 20% consisting of a denser sponge-like outer layer. In contrast to other existing Pd/Ag composite membranes, where an intermediate γ-Al2O3 layer is often used to bridge the Pd/Ag layer and the substrate, the Pd/Ag composite membrane prepared in this study was achieved by coating the Pd/Ag layer directly onto the outer surface of the asymmetric substrate. After depositing submicron-sized Pt (0.5 wt %)/γ-alumina catalysts in the finger-like voids of the substrates, a highly compact multifunctional iHFMR was developed. Propane conversion as high as 42% was achieved at the initial stage of the reaction at 723 K. In addition, the space-time yields of the iHFMR were ∼60 times higher than that of a fixed bed reactor, demonstrating advantages of using iHFMR for dehydrogenation reactions. © 2009 American Institute of Chemical Engineers AIChE J, 2009  相似文献   

4.
针对错流移动床存在的空腔和颗粒流动偏离平推流的不正常操作问题。在一套φ600 mm×1300 mm半圆锥形和柱形错流移动床大型冷模实验装置上,借助于大颗粒助剂的引入有效提高了错流移动床出现空腔的临界速度,解决了错流移动床操作弹性低的问题。理论分析和实验结果表明,混入适量的大颗粒助剂可使颗粒流动不均匀性得到明显改善。  相似文献   

5.
6.
A pilot‐plant membrane bioreactor (MBR) and two pilot‐plant hybrid moving bed biofilm reactor–membrane bioreactors (MBBR–MBRs), divided into three aerobic and one anoxic chambers, were started up for the treatment of salinity‐amended urban wastewater. The MBBR–MBR systems worked with and without carriers in the anoxic zone (MBBR–MBRanox and MBBR–MBRn/anox, respectively). The systems were operated from start‐up to stabilization, showing high removal of organic matter—a maximum of 90% chemical oxygen demand and 98% biochemical oxygen demand on the fifth day for MBBR–MBRn/anox in the stabilization phase—but low nitrogen elimination—30% maximum for MBBR–MBRn/anox in the stabilization phase. Biofilm attached to carriers reached less than 50 mg L?1 in the hybrid system. MBR showed faster kinetics than the two MBBR–MBR systems during start‐up, but the opposite occurred during stabilization. Maximum specific growth rates for heterotrophic and autotrophic biomass were 0.0500 and 0.0059 h?1 for MBBR–MBRn/anox in the stabilization phase. © 2017 American Institute of Chemical Engineers AIChE J, 63: 3329–3342, 2017  相似文献   

7.
A novel reactor concept is proposed for partial oxidation reactions that combines membrane and fluid bed reactor technology in a single vessel. Air fluidizes the shell side in which both membrane tubes — charged with catalyst — and cooling coils are immersed. Oxygen transport through the membrane wall is controlled by pressure drop. Model simulations, based on the kinetics for the oxidative dehydrogenation of propane to propene, show improved performance compared to conventional fixed bed technology. The controlled oxygen addition along the axis improves propene selectivity and broadens the operating range with respect to hydrocarbon and oxygen feed rates.  相似文献   

8.
考察了方形径向流固定床煤热解反应器中变化煤层厚度对料层升温速度及煤热解产物分布特性的影响。随着料层厚度增加,导致煤热解反应要求的时间增长,热解水和气的产率相应增加,焦油和半焦收率逐渐降低,但焦油中轻质组分(沸点低于360℃组分)含量呈升高趋势,半焦和煤气热值稍许降低。如,加热壁温度900℃、从45 mm至105 mm增加煤料层厚度时,焦油产率从7.17%(质量,下同)下降到6.26% (相对干基煤),但焦油中的轻焦油组分含量则从67%升至72.7%,半焦产率由80.0%降至77.0%,热解水和煤气产率分别由6.96%和5.91%增至8.85%和7.90%,煤气热值则由24348.5 kJ·m-3下降至20649.2 kJ·m-3。所得半焦的热值径向上由高温侧向低温侧逐渐降低,煤料层越厚、热值降幅越大,而相同煤料层厚度处与加热壁平行的同一轴向平面上的半焦热值基本相同。针对研究的反应器,气相热解产物在反应器内沿径向(横向)由高温料层区向低温料层区流动。在该过程中伴随着热解产物对远离加热壁的低温煤料的传热、热解生成重质组分的冷凝和在煤/半焦颗粒表面的吸附截留,进而在低温料层进一步升高温度时发生二次裂解等物理化学过程。反应器内煤层厚度越大,上述各种伴随的物化作用越显著,从而明显影响煤料层的升温及热解特性。  相似文献   

9.
A large number of promising enzyme reactions, such as diastereospecific carbon-carbon bond formation by aldolases, suffers from an unfavorable position of the reaction equilibrium. Combining continuous chromatography and enzymatic reactions should allow for a new in situ or online product recovery process to achieve high reaction productivity and yield and make these biocatalysts economically more attractive. The integration imposes a series of constraints on the chromatographic separation, mainly on the applicable solvent, which is at the same time the reaction medium for the enzymatic reaction. We exploit this concept for a model process, the integrated biocatalytic production of L-allo-threonine from glycine and acetaldehyde. Of crucial importance for this process is the separation of the two physicochemically similar amino acids glycine and threonine, in particular in the presence of additional compounds such as the second starting material and enzyme cofactors. This separation was first investigated on a lab-scale simulated moving bed (SMB) unit under enzyme compatible conditions. After triangle theory-based identification of SMB operating points, the two amino acids could be efficiently separated, applying aqueous eluents with minor content of organic co-solvent at neutral pH on a weak cation exchanger resin. Remarkably, the separation performance with respect to the two amino acids was only slightly reduced by coupling the SMB to a continuously operated enzyme membrane reactor, whose efflux contained, in addition to the amino acids, acetaldehyde and the cofactor pyridoxal-5-phosphate. This represents an important step to the future design of even further integrated biocatalytic reaction-separation schemes.  相似文献   

10.
The antagonist effect of pressure on the thermodynamic equilibrium and the H2 permeation rate has been studied in a small-scale membrane reactor (MR) with no sweep gas.  相似文献   

11.
The Cu/SiO2/ceramic composite membrane was prepared on the SiO2/ceramic mesoporous membrane by an ion exchange method, and vapor phase dehydrogenation of methanol to methyl formate in the catalytic membrane reactor was investigated. It showed much better performance in the catalytic membrane reactor than that in the fixed-bed reactor under the same reaction conditions. At 240 °C, 57.3% conversion of methanol and 50.0% yield of methyl formate were achieved in the catalytic membrane reactor and only 43.1% conversion of methanol and 36.9% yield of methyl formate were achieved in the fixed-bed reactor.  相似文献   

12.
This work analyzes the influence of liquid flow modulation on the behavior of a reaction occurring in a spherical porous particle within a trickle bed reactor. A single first-order reaction between a gaseous reactant and a non-volatile liquid reactant is considered. Non-steady-state mass balances for gas and liquid reactants are formulated and solved under isothermal conditions in order to focus the analysis on the mass transport effects. Dynamic reactant profiles inside the catalytic particle are obtained for different cycling and system conditions. The enhancement factor (ε) due to periodic operation is defined to evaluate the impact of induced liquid flow modulation on reaction rate. Influence of cycling and system parameters on the enhancement factor is also reported for a wide range of conditions. Experimental trends observed by several authors can be explained with this approach.  相似文献   

13.
The present study combines simultaneously the definition of fluidisation and process intensification (thermally coupled heat exchanger reactor) concept and determines the optimum operational conditions in both sides of the reactor, using Differential Evolution (DE) optimisation approach. The exothermic hydrogenation of nitrobenzene to aniline takes place in a set of tubular reactors which is placed inside the naphtha reactors and thermally handle the endothermic reaction of reforming. A single objective function consists of four terms including aromatic mole fraction of the reformate and hydrogen production from each reactor in the endothermic side as well as the total molar flow rate of aniline and nitrobenzene conversion in the exothermic side is defined. Seven decision variables such as inlet temperature of exothermic and endothermic sides, exothermic molar flow rates for the first and the second reactors and the number of tubes are considered during the optimisation procedure. Temperature constraints have been considered in both sides during the optimisation in order to reduce the possibility of rapid catalyst deactivation by sintering. Results show approximately 464.4 and 598.9 kg/h increase in aromatic and aniline production rates in optimised thermally coupled fluidised bed naphtha reactor (OTCFBNR) compared with non‐optimised case (TCFBNR), respectively. Such a theoretical study is necessary prior to designing new pilot plants and revamping industrial units. © 2011 Canadian Society for Chemical Engineering  相似文献   

14.
Owing to the importance of process intensification in the natural gas associated processes, the present contribution aims to investigate the production of an important natural gas downstream product in an improved system. Accordingly, a membrane-assisted reactor for the oxidative dehydrogenation of ethane is presented. The presented system includes a membrane for axial oxygen dosing into the reaction side. Such a strategy would lead to optimum oxygen distribution along the reactor length and prevention of hot spot formation as well. A feasibility study is conducted by developing a validated mathematical model composed of mass and energy balance equations. The effects of various operating variables are investigated by a rigorous sensitivity analysis. Then, by applying the genetic algorithm, a multi-objective optimization procedure is implemented to obtain the optimum operating condition. Considerable increase in the ethane conversion and ethylene yield are the advancements of membrane-assisted oxidative dehydrogenation reactor working under the optimum condition. More than 30% increase in the ethane conversion is obtained. Furthermore, the ethylene yield is enhanced up to 0.45.  相似文献   

15.
Radial solids velocity profiles were computed on seven axial levels in the riser of a high-flux circulating fluidized bed (HFCFB) using a two-phase 3-D computational fluid dynamics model. The computed solids velocities were compared with experimental data on a riser with an internal diameter of 76 mm and a height of 10 m, at a high solids flux of 300 kg m−2 s−1 and a superficial velocity of 8 m s−1. Several hundreds of experimental and numerical studies on CFBs have been carried out at low fluxes of less than 200 kg m−2 s−1, whereas only a few limited useful studies have dealt with high solids flux. The k two-phase turbulence model was used to describe the gas–solids flow in an HFCFB. The model predicts a core–annulus flow in the dilute and developed flow regions similar to that found experimentally, but in the region of highest solids concentration it is somewhat overpredicted at the level close to the inlet.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号