首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A mesoscale model of fatigue crack formation and stress–strain behavior in crystalline alloys entitled Sistaninia–Niffenegger Fatigue (SNF) model is applied to AISI 316L austenitic stainless steel. An inelastic hysteresis energy criterion in conjunction with continuum damage modeling provides a strong tool for studying the behavior of the austenitic steel under cyclic loading. The model predictions are validated against fatigue experimental data. The results show that this microstructural-based modeling approach is capable for predicting the behavior of the steel even under complex loading conditions. It can reproduce and help to understand well known fatigue experimental facts, e.g. the effect of grain size and initial defects, by considering the anisotropic behavior of crystalline materials at the level of the microstructure.  相似文献   

2.
In this paper, a physics‐based multiscale approach is introduced to predict the fatigue life of crystalline metallic materials. An energy‐based and slip‐based damage criterion is developed to model two important stages of fatigue crack initiation: the nucleation and the coalescence of microcracks. At the microscale, a damage index is developed on the basis of plastic strain energy to represent the growing rate of a nucleated microcrack. A statistical volume element model with high computational efficiency is developed at the mesoscale to represent the microstructure of the material. Also, the formation of a major crack is captured by a coalescence criterion at mesoscale. At the macroscale, a finite element analysis of selected test articles including lug joint and cruciform is conducted with the statistical volume element model bridging two scale meshes. A comparison between experimental and simulation results shows that the multiscale damage criterion is capable of capturing crack initiation and predicting fatigue life.  相似文献   

3.
Fatigue behavior of polycrystalline materials is significantly influenced by their microstructural topology. The microstructural heterogeneity is one of the primary reasons for dispersion in high cycle fatigue lives of such materials. In this work, a damage mechanics based fatigue model that incorporates gradual material degradation under cyclic loading is presented in conjunction with a discrete material representation that takes the material microstructural topology into account. Microstructures are generated stochastically through the process of Voronoi tessellation. Micro-crack initiation, coalescence and propagation stages are modeled using damaged zones in a unified framework. The model is applied to study high cycle fatigue in rolling contacts. The effect of material topological disorder and inhomogeneity on fatigue life dispersion is studied. Fatigue damage is found to originate sub-surface and propagate towards the surface. Sub-surface damage patterns from the model are consistent with experimental observations. Propagation life is found to constitute a significant fraction of total life. Lives are found to follow a 3-parameter Weibull distribution. The relative proportion of lives spent in the initiation and propagation stages are in good quantitative agreement with experiments.  相似文献   

4.
5.
Fatigue failure is the dominant mechanism that governs the failure of components and structures in many engineering applications. In conventional engineering applications due to the design specifications, a significant proportion of the fatigue life is spent in the crack initiation phase. In spite of the large number of works addressing fatigue life modelling, the problem of modelling crack initiation life still remains a major challenge in the scientific and engineering community. In the present work, we present a methodology for estimating fatigue crack initiation life using macroscale loading conditions and the microstructural phenomenon causing crack initiation. Microstructure sensitive modelling is used for predicting potential crack initiation life by employing randomly generated representative microstructures. The microstructural parameters contributing to crack initiation life are identified and accounted for by computing lattice level energy dissipation during fatigue crack initiation. This model is coupled with experimental results to improve the predictive capabilities and identification of potentially damaging weak points in the microstructures. The estimated values for crack initiation life were found to be in good agreement with the experimentally observed values of initiation life. The results have shown that this kind of approach could be successfully used to predict crack initiation life in polycrystalline materials. This work successfully provides an approach for estimating crack initiation life based upon numerical computations accounting for the microstructural phenomenon.  相似文献   

6.
This paper is concerned with finite element modelling of microstructure-sensitive plasticity and crack initiation in fretting. The approach adopted is based on an existing method for microstructure-sensitive (uniaxial) fatigue life prediction, which proposes the use of a unit cell crystal plasticity model to identify the critical value of accumulated plastic slip associated with crack initiation. This approach is successfully implemented here, using a FCC unit cell crystal plasticity model, to predict the plain low-cycle fatigue behaviour of a stainless steel. A crystal plasticity frictional contact model for stainless steel is developed for microstructure-sensitive fretting analyses. A methodology for microstructure-sensitive fretting crack initiation is presented, based on identification of the number of cycles in the fretting contact at which the identified critical value of accumulated plastic slip is achieved. Significant polycrystal plasticity effects in fretting are predicted, leading to significant effects on contact pressure, fatigue indicator parameters and microstructural accumulated slip. The crystal plasticity fretting predictions are compared with J2 continuum plasticity predictions. It is argued that the microstructural accumulated plastic slip parameter has the potential to unify the prediction of wear and fatigue crack initiation, leading in some cases, e.g. gross slip, to wear, via a non-localised distribution of critical crystallographic slip, and in other cases, e.g. partial slip, to fatigue crack initiation, via a highly-localised distribution of critical crystallographic slip with preferred orientation (cracking locations and directions).  相似文献   

7.
In fretting fatigue, the combination of small oscillatory motion, normal pressure and cyclic axial loading develops a noticeable stress concentration at the contact zone leading to accumulation of damage in fretted region, which produces micro cracks, and consequently forms a leading crack that can lead to failure. In fretting fatigue experiments, it is very difficult to detect the crack initiation phase. Damages and cracks are always hidden between the counterpart surfaces. Therefore, numerical modeling techniques for analyzing fretting fatigue crack initiation provide a precious tool to study this phenomenon. This article gives an insight in fretting fatigue crack initiation. This is done by means of an experimental set up and numerical models developed with the Finite Element Analysis (FEA) software package ABAQUS. Using Continuum Damage Mechanics (CDM) approach in conjunction with FEA, an uncoupled damage evolution law is used to model fretting fatigue crack initiation lifetime of Double Bolted Lap Joint (DBLJ). The predicted fatigue lifetimes are in good agreement with the experimentally measured ones. This comparison provides insight to the contribution of damage initiation and crack propagation in the total fatigue lifetime of DBLJ test specimens.  相似文献   

8.
Very often, different approaches are used for crack initiation and crack growth predictions. The current article introduces a recently developed approach that can be used for the predictions of both crack initiation and crack propagation. A basic assumption is that both crack nucleation and crack growth are governed by the same fatigue damage mechanisms and a single fatigue damage criterion can model both stages. A rule is that any material point fails to form a fresh crack if the total accumulated fatigue damage reaches a limit. For crack initiation predictions, the stresses and strains are obtained either directly from experiments or though a numerical analysis. For the prediction of crack growth, the approach consists of two steps. Elastic‐plastic stress analysis is conducted to obtain the detailed stress‐strain responses. A general fatigue criterion is used to predict fatigue crack growth. Compact specimens made of 1070 steel were experimentally tested under constant amplitude loading with different R‐ratios and the overloading influence. The capability of the approach to predict both crack initiation and the crack growth under these loading conditions was demonstrated by comparing the predictions with the experimental observations.  相似文献   

9.
A probabilistic approach to modeling of the initial stage of fatigue crack growth is suggested based on the concepts of continuum damage mechanics. The material is presented as a set of microstructural elements with randomly distributed properties. Both the grains and intergranular boundaries are considered as the elements of microstructure. The parameters of resistance of each element to damage accumulation are considered as random variables. These parameters are distributed among the elements independently that allows to model the damage process in polycrystalline materials. The damage measure depends on the characteristic normal and tangential stresses in order to take into account the tensile and shear fracture modes for each element of microstructure. It is assumed that a nucleus of a crack is initially present near the body surface as a single completely ruptured element. The final damage of an element is considered as the crack advancement. The crack is modelled as a sequence of ruptured grains for the transgranular fracture, and as a sequence of couples of neighboring ruptured grains when the intergranular rupture is considered. Numerical simulation is performed to illustrate feasibility of the proposed model. In particular, non-planar crack propagation, blunting, kinking and branching of cracks at the early stage is demonstrated. The non-monotonous pattern of the short crack growth process is observed. Statistical scattering of the current crack size and the crack growth rate as functions of the cycle number and the crack depth is studied.  相似文献   

10.
The effects of stress ratio on the fatigue crack initiation and growth were investigated by a newly developed unified model, which is based on the cyclic plasticity property of material and a multiaxial fatigue damage criterion in incremental form. The cyclic elastic-plastic stress-strain field was analyzed using the general-purpose finite element software (ABAQUS) with the implementation of a robust cyclic plasticity theory. The fatigue damage was determined by applying the calculated stress-strain responses to the incremental fatigue criterion. The fatigue crack growth rates were then obtained by the unified model. Six compact specimens with a thickness less than 3.8 mm were used for the fatigue crack initiation and growth testing under various stress ratios (−1.0, 0.05, 0.1, 0.2, 0.3 and 0.5). Finite element results indicated that crack closure occurred for the specimen whose stress ratio was less than 0.3. The combined effects of accumulated fatigue damage induced by cyclic plastic deformation and possible contact of cracked surfaces were responsible for the fatigue crack initiation and growth. The predicted results agreed with the benchmark mode I fatigue crack growth experiments very well.  相似文献   

11.
The subject of fatigue which comprises crack nucleation, crack propagation and final failure or fracture has, over the years, been the subject of numerous theoretical and experimental studies. These studies have highlighted the extrinsic influence of mixed-mode loading in governing the fatigue behavior of a wide spectrum of engineering materials and structures. In this paper we review the basic criteria and models that have been proposed and used to predict crack behavior and response for structures containing large cracks and subject to mixed-mode loading. Since the aspect of crack growth is the focus of this review, the effects or contributions from intrinsic microstructural effects are largely excluded. Specific criteria discussed are the maximum tangential stress, minimum strain-energy density and the maximum energy-release rate criteria. The use of these criteria to predict the behavior of structures is examined based on results published in the open literature. The characteristics and implications of each criterion are examined and discussed with particular relevance to threshold conditions on crack growth, direction of crack growth and crack-growth rate. The limitations of each criterion are highlighted.  相似文献   

12.
A new approach is developed to implement the cohesive zone concept for the simulation of delamination in fibre composites or crack growth in adhesive joints in tension or shear mode of fracture. The model adopts a bilinear damage evolution law, and uses critical energy release rate as the energy required for generating fully damaged unit area. Multi-axial-stress criterion is used to govern the damage initiation so that the model is able to show the hydrostatic stress effect on the damage development. The damage material model is implemented in a finite element model consisting of continuum solid elements to mimic the damage development. The validity of the model was firstly examined by simulating delamination growth in pre-cracked coupon specimens of fibre composites: the double-cantilever beam test, the end-notched flexure test and the end-loaded split test, with either stable or unstable crack growth. The model was then used to simulate damage initiation in a composite specimen for delamination without a starting defect (or a pre-crack). The results were compared with those from the same finite element model (FEM) but based on a traditional damage initiation criterion and those from the experimental studies, for the physical locations of the delamination initiation and the final crack size developed. The paper also presents a parametric study that investigates the influence of material strength on the damage initiation for delamination.  相似文献   

13.
The fatigue crack initiation period, previously thought to be a necessary precursor to fatigue crack propagation and eventual failure, is considered here to be a negligible phase in the fatigue failure of polycrystalline metals. Rather this period is considered to be the propagation of a defect of microstructural dimensions by a variety of processes. The significance of this alternative view is examined in relation to corrosion fatigue, models of short crack growth, different loading modes, and the enhancement of fatigue resistance by surface shot-peening treatments. In both inert and aggressive environments, the fatigue lifetime of plain steel specimens of various strengths and treatments is predominantly determined by the early propagation of short cracks of microstructural dimensions. Microstructural fracture mechanics, rather than continuum mechanics, can quantify both pit growth and Stage I shear crack growth behavior before the defect reaches the dominant microstructural barrier which controls the fatigue behavior of the material. The important processes that determine lifetime are those that are strongly dependent on the synergism between the aggressive environment and cyclic stresses; these are the pitting, Stage I and the Stage I-to-Stage II crack propagation processes. A model has been produced to quantify these three important stages of lifetime named above. Under torsion loading, where Stage I cracks prefer to propagate along the surface, an intermittent series of deceleration/acceleration events of crack growth occur across the first few grain boundaries until the defect is blocked in its further development by a major microstructural barrier. When this barrier is breached, the environmentally-assisted Stage I crack rapidly becomes a Stage II crack. Under push-pull loading, the Stage I environmentally-assisted crack can propagate faster into the bulk material and, as a consequence, the transition to a Stage II environmentally-assisted crack is rapid thereby eliminating the need for the intermittent process observed under torsion loading. With no environmentally-assisted fatigue processes (i.e., testing in air) reversed torsion and push-pull loading test data can best be correlated by a von Mises criterion. Corrosion fatigue lifetimes can best be correlated by a Rankine (tensile stress) criterion. Shot-peening enhances the corrosion fatigue resistance of polycrystalline metals by inducing residual compressive stresses in the surface and creating numerous and more rapidly formed microcracks. This is probably caused by the presence of variously oriented plastically deformed bands within the surface microstructure and “short crack-short crack” interactions both of which delay the progress of the dominant crack toward its final Stage II phase. The present work is published according to the kind permission of the Royal Society in London. In 1997, Prof. K. J. Miller celebrated his 65th birthday. Congratulations of the Editorial Board on this occasion are presented at the end of this issue. Research Institute for the Integrity of Structures, Sheffield University (SIRIUS), England. Translated from Fizyko-Khimichna Mekhanika Materialiv, Vol. 33, No. 1, pp. 9–32, January–February, 1997.  相似文献   

14.
The evolutionary density and the scatter of densities of the short fatigue cracks on the surface of 1 Cr18Ni9Ti pipe-weld metal were observed by local and overall viewpoints,respectively.The local viewpoint ,which is in accordance with a so-called “effectively short fatigue crack criterion“,paid attention to the dominant effective short fatigue crack (DESFC) initiation zone and the zones ahead of the DESFC tips.The overall viewpoint focused on the whole test piece of specimen.The results revealed that the density and scatter evolution exhibited a significant character of microstructural short crack and physical short crack stages.The evolutionary behavior by the local viewpoint was sensitive to the increase of DESFC size and tip location.The mechanism of the short crack growth associated with the general test observations that the DESFC acted gradually as a long crack and the scatter of DESFC growth rates tended gradually to that of a long crack was well revealed.Intrinsic causes of the random cyclic strain-life relations and stress-strain responses are appropriately given.In contrast ,the evolutionary behavior by the overall viewpoint was non-sensitive and violated the general test observations.Therefore,the intrinsic localization and randomization of material evolutionary fatigue damage should be more appropriately revealed from the observations by the local viewpoint.  相似文献   

15.
Presently modeling of surface fatigue crack growth for residual life assessment of structural elements is almost entirely based on application of the Linear Elastic Fracture Mechanics (LEFM). Generally, it is assumed that the crack front does not essentially change its shape, although it is not always confirmed by experiment. Furthermore, LEFM approach cannot be applied when the stress singularity vanishes due to material plasticity, one of the leading factors associated with the material degradation and fracture. Also, evaluation of stress intensity factors meets difficulties associated with changes in the stress state along the crack front circumference. An approach proposed for simulation the evolution of surface cracks based on application of the Strain-life criterion for fatigue failure and of the finite element modeling of damage accumulation. It takes into account the crack closure effect, the nonlinear behavior of damage accumulation and material compliance increasing due to the damage advance. The damage accumulation technique was applied to model the semi-elliptical crack growth from the initial defect in the steel compact specimen. The results of simulation are in good agreement with the published experimental data.  相似文献   

16.
The purpose of this work was to test a microstructure based fatigue life prediction Monte-Carlo model for potential use in quantifying fatigue quality and reliability of metallic structural alloys. The model used was of the crack growth type with the sizes of crack initiating pores, local crack geometry and crack tip texture as random variables. The model was verified using data for 7050-T7451 plate alloy fatigue tested in smooth sample configuration at σmax of 241 and 276 MPa and R=0.1. The mechanical testing was supplemented with characterizations of the size distributions of the fatigue performance limiting bulk porosity and measurements of the actual sizes of the fatigue crack initiating pores. Predicted fatigue lives were in good agreement with the experimental results and the model identified the size distribution of the crack initiating pores as the dominant variable controlling fatigue performance. The distributions of those pores were predicted from the bulk pore size data using the statistics of extremes. The developed approach proved effective in incorporating microstructural information in modeling fatigue and could be used in ranking fatigue quality and reliability of materials based on microstructural data.  相似文献   

17.
The multistage fatigue model for high cycle fatigue of a cast aluminum alloy developed by McDowell et al. is modified to consider the structure-property relations for cyclic damage and fatigue life of a high strength aluminum alloy 7075-T651 for aircraft structural applications. The multistage model was developed as a physically-based framework to evaluate sensitivity of fatigue response to various microstructural features to support materials process design and component-specific tailoring of fatigue resistant materials. In this work, the model is first generalized to evaluate both the high cycle fatigue (HCF) and low cycle fatigue (LCF) regimes for multiaxial loading conditions, with appropriate modifications introduced for wrought materials. The particular microstructural features of relevance to fatigue in aluminum alloy 7075-T651 include micron-scale Fe-rich intermetallic particles and rolling textures. The model specifically addresses the role of local constrained cyclic microplasticity at fractured inclusions in fatigue crack incubation and microstructurally small crack growth, including the effect of crystallographic orientation on crack tip displacement as the driving force. The model is able to predict lower and upper bounds of the fatigue life based on measured inclusion sizes.  相似文献   

18.
A model is developed herein for predicting the mechanical response of inelastic crystalline solids. Particular emphasis is given to the development of microstructural damage along grain boundaries, and the interaction of this damage with intragranular inelasticity caused by dislocation dissipation mechanisms. The model is developed within the concepts of continuum mechanics, with special emphasis on the development of internal boundaries in the continuum by utilizing a cohesive zone model based on fracture mechanics. In addition, the crystalline grains are assumed to be characterized by nonlinear viscoplastic mechanical material behavior in order to account for dislocation generation and migration. Due to the nonlinearities introduced by the crack growth and viscoplastic constitution, a numerical algorithm is utilized to solve representative problems. Implementation of the model to a finite element computational algorithm is therefore briefly described. Finally, sample calculations are presented for a polycrystalline titanium alloy with particular focus on effects of scale on the predicted response. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

19.
This article is dedicated to the high cycle fatigue behaviour of cast hypo-eutectic Al–Si alloys and in particular the AlSi7Cu05Mg03 alloy. In a vast experimental campaign undertaken to investigate the fatigue damage mechanisms operating in this alloy, subject to complex loading conditions, it was shown that two different coexisting fatigue damage mechanisms occur in this materials, depending on the presence of different microstructural heterogeneities (i.e. micro-shrinkage pores, Si particles, Fe-rich intermetallic phases, DAS of the Al-matrix, etc.). In order to take into account both of these damage mechanisms, a probabilistic approach using the weakest link concept is introduced to model the competition between the two mechanisms. This approach leads naturally to a probabilistic Kitagawa type diagram, which explains the relationship between the fatigue behaviour of the material and the different casting processes or post-treatments (e.g. gravity casting and HIP).It is shown that the sensitivity to the different loading modes (i.e. uniaxial with and without mean stress, torsion and equibiaxial tension) depends on the microstructural heterogeneities responsible for crack initiation. For a porosity-free alloy, the predictions are very good for combined tension–torsion loading modes. When pores are present and control the fatigue strength, the predictions are very satisfactory for the uniaxial loads with different R-ratios and slightly conservative for multiaxial loads (i.e. torsion and equibiaxial tension). Never-the-less, they are much better than the predictions of the Dang Van criterion [1].  相似文献   

20.
The evolutionary density and the scatter of densities of the short fatigue cracks on the surface of 1Cr18Ni9Ti pipe-weld metal were observed by local and overall viewpoints, respectively. The local viewpoint, which is in accordance with a so-called "effectively short fatigue crack criterion", paid attention to the dominant effective short fatigue crack (DESFC) initiation zone and the zones ahead of the DESFC tips. The overall viewpoint focused on the whole test piece of specimen. The results revealed that the density and scatter evolution exhibited a significant character of microstructural short crack and physical short crack stages. The evolutionary behavior by the local viewpoint was sensitive to the increase of DESFC size and tip location. The mechanism of the short crack growth associated with the general test observations that the DESFC acted gradually as a long crack and the scatter of DESFC growth rates tended gradually to that of a long crack was well revealed. Intrinsic causes of the random cyclic  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号