首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The microstructures and mechanical properties of weld metals of high strength steels having 3–9% Ni content have been investigated with getting a better insight into the role of retained austenite. The weld metals were produced autogenously by electron beam welding (EBW) process. The results showed that once Ni content exceeded 4% prior austenitic grains of the weld metals were rapidly coarsened and solidified into a cellular dendritic structure. The content of retained austenite increased with Ni addition and was preferentially distributed along the lath boundary, edges of coalesced bainite, cellular dendritic boundaries and at prior austenite grain boundaries. Retained austenite morphology was also changed on increasing nickel content from a discontinuous film into a continuous one. The impact toughness for half-size specimens has shown a significant drop from 126 J to 40 J when Ni content increased from 3% to 5%, while further addition of Ni partially recovered the toughness. Thorough investigation of fracture surface of weld metals, after impact test, elucidated that retained austenite was beneficial and has an effective role in reducing the detrimental effect of coalesced bainite that formed in the microstructure.  相似文献   

2.
A new family of resource-saving, low Cr and low Ni duplex stainless steels, with compositions of 15Cr–xAl–2Ni–yMn (x = 1.2–2.8, y = 8–12, wt.%) has been developed by examining the effect of Al and Mn on microstructure, mechanical property and corrosion property. The results show that 15Cr–1.2Al–2.0Ni–8Mn and 15Cr–2.0Al–2.0Ni–10Mn alloys have a balanced ferrite–austenite relation and that 15Cr–2.8Al–2.0Ni–12Mn alloy has a primary ferrite phase structure. The ferrite volume fraction increases with the solution treatment temperature and Al content while decreases with Mn content. No precipitate was found after solution-treated at 750 °C for 30 min. 15Cr–1.2Al–2.0Ni–8Mn alloy has a strong strain hardening effect, and 15Cr–2.0Al–2.0Ni–10Mn alloy has a good TRIP effect. Both of the 15Cr–1.2Al–2.0Ni–8Mn and 15Cr–2.0Al–2.0Ni–10Mn alloys have excellent impact toughness at low temperature with the impact energy higher than 125 J at −40 °C. The pitting corrosions always occur in austenite phase. Among the designed alloys, 15Cr–1.2Al–2.0Ni–8Mn and 15Cr–2.0Al–2.0Ni–10Mn are found to be excellent alloys with a proper phase proportion and a better combination of superior mechanical property and good pitting corrosion resistance.  相似文献   

3.
Heat-treatment processes to obtain carbide-free upper bainite, low bainite and low-temperature bainite in the 34MnSiCrAlNiMo medium-carbon steel were explored. Results show that in the steel bainite transformation mainly goes through three stages: short incubation, explosive nucleation and slow growth. When transformation temperature, T > Ms + 75 °C, upper bainite consisted of catenary bainitic ferrite and blocky retained austenite is obtained in the steel. When Ms + 10 °C < T < Ms + 75 °C, lower bainite is the main morphology composed of lath-like bainitic ferrite and flake-like retained austenite. When T < Ms + 10 °C, the lower bainite, also known as low-temperature bainite, is obtained, which contains much thinner lath-like bainitic ferrite and film-like retained austenite. Mechanical testing results show that the lower the transformation temperature is, the better comprehensive performance is. The low-temperature bainite has the very high tensile strength and impact toughness simultaneously. The lower bainite has lower tensile strength and higher impact toughness. The upper bainite has higher tensile strength and lower impact toughness. The big difference of the mechanical performance between these kinds of bainite is mainly caused by interface morphology, size, and phase interface structure of the bainitic ferrite and the retained austenite. Additionally, when the bainite transformation temperature is decreased, the high-angle misorientation fraction in packets of bainite ferrite plates is increased. High-angle misorientation between phase interfaces can prevent crack propagation, and thus improves impact toughness.  相似文献   

4.
The structure–mechanical property relationship, with particular focus on effect of tempering process on the microstructural evolution and mechanical properties was investigated in a low carbon Cu-bearing steel that was processed in three-steps, namely, intercritical annealing, intercritical tempering, and tempering heat treatment. The objective of adopting three steps was to elucidate the nature and evolution of microstructural constituents that contributed to high strength–ductility combination in the studied steel. The three-step processing led to a microstructure primarily comprising of ferrite, retained austenite, and small amount of bainite/martensite. The mechanical properties obtained were: yield strength > 720 MPa, tensile strength > 920 MPa, uniform elongation > 20%, total elongation > 30%, and low yield ratio of 0.78. The tempering step led to a significant increase in both yield and tensile strength and decrease in yield ratio, without reducing ductility, a behavior attributed to the precipitation of copper in retained austenite and ferrite. The precipitation of copper enhanced the stability of retained austenite and work hardening rate, leading to a high volume fraction of retained austenite (∼29%), with consequent increase in elongation and significant increase in yield and tensile strength during tempering.  相似文献   

5.
A low carbon, low alloy steel has been investigated for producing low carbon carbide-free bainitic microstructure by co-addition of alloying elements of aluminum and silicon. The influence of heat treatment process on microstructure, impact toughness as well as tensile properties was investigated by light optical microscopy, transmission electron microscopy, X-ray diffraction and mechanical property tests. The results demonstrate that the co-addition of aluminum and silicon in the investigated steel plays an effective role in suppressing the precipitation of cementite. A desired microstructure consisting of mainly fine-scale carbide-free bainitic ferrite and thin film-like retained austenite located between the ferrite laths was obtained and accordingly an excellent combination of toughness, ductility and strength was achieved by optimized heat treatments, i.e. by isothermal treatment at 320 °C for ∼84 min or more. The microstructure-mechanical property relationships are discussed.  相似文献   

6.
Herein, the effect of shortening the intercritical annealing (IA) time in a two-step process “intercritical annealing and tempering (IAT)” on the microstructure and the mechanical properties of medium-manganese steel (MMnS) made of Fe–0.05C–7Mn–1.5Cu–1.5Ni–1.5Al–1.5Si–0.5Mo (wt%) and containing copper-rich (CRP) and Ni(Al/Mn) precipitates is investigated. The atom probe tomography (APT), electron backscattering diffraction (EBSD), and the synchrotron X-ray diffraction (SYXRD) are used to study precipitation, phase microstructure evolution, the austenite stability, and deformation mechanisms. Shortening the IA step, which is carried out at 700 °C, from 2 min (IAT-2) to 1 min (IAT-1), results in a yield strength (YS) increment of around 218 MPa with less than 1% loss of ductility. While the enhanced yield strength in IAT-1 is attributed to the four times higher precipitates’ number density (n), the insignificant loss of ductility is attributed to the enhanced austenite stability factor from 4.5 to 9.2 in IAT-2 and IAT-1, respectively. The simultaneous increase in YS without ductility loss reflects that controlling the IA time is a promising strategy to overcome the yield strength and ductility trade-off without the need for higher additions of costly alloying elements such as Ni, Al, Mn, and Cu.  相似文献   

7.
A layer of AerMet100 steel was coated on the surface of forged 300 M steel using laser cladding technique. The chemical compositions, microstructures, hardness and tensile properties of this AerMet100/300 M material were systematically investigated. Results show that the composition of the AerMet100 clad layer is macroscopically homogeneous, and a compositional transition zone with width of 150 μm is observed between the clad layer and heat affected zone. Microstructures in transition zone transform from the fine needle-like bainite in 300 M steel to the lath tempered martensite in AerMet100 clad layer. Microstructures in heat affected zone also gradually change from the thick plate bainite and blocky retained austenite (unstable heat affected zone) to fine needle-like bainite and film-like austenite (stable heat affected zone) due to different thermal cycle processes. Thick plate bainite together with blocky retained austenite in unstable heat affected zone reduce the strength and ductility of AerMet100/300 M material. However, the tensile specimens, consisting of clad layer and stable heat affected zone, show slightly inferior mechanical properties to 300 M steel. Ductile fracture exists in AerMet100 clad layer while quasi-cleavage fracture occurs in the stable heat affected zone.  相似文献   

8.
The present work systematically investigates the effects of starting microstructure and intercritical annealing temperature on the tensile properties and Lüders strain of transformation-induced plasticity steels containing 5 wt.% Mn. It is found that higher intercritical annealing temperature leads to smaller Lüders strain, lower yield strength and higher ultimate tensile strength. The starting cold-rolled microstructure produces much coarser microstructural constituents and larger Lüders strain than the martensitic one. It is concluded that the fraction and size of austenite grains and the amount of carbide formed during intercritical annealing are the most important microstructural factors to determine the Lüders strain rather than the fraction of retained austenite and the grain size of the ferritic phase.  相似文献   

9.
Effect of Mn on microstructure, mechanical property and pitting corrosion of 19% Cr economical duplex stainless steels with solution temperatures ranging from 1040 to1220 °C has been investigated. The austenite content increases with more Mn addition, but decreases by increasing solution temperature, which can be inferred by trend of partition coefficient KMn with solution temperature. Meanwhile, a balanced austenite-ferrite duplex structure of solution-treated specimens was obtained with Mn addition. The impact energy at 20 °C increased with decreasing solution temperature from 1220 °C to 1040 and 1120 °C, and improved by more Mn addition due to more ductile austenite phase formation. These toughness variations were consistent with fracture morphology characteristic changing. The effect of more Mn addition and solution treatment of 1120°Con decreasing of tensile strength and 0.2% offset yield strength were slight. However, the elongation to fracture (%) fell greatly with Mn addition up to 8.1 wt.% for as-rolled and solution treated specimens due to larger deformation strains of austenite than that of ferrite. The decreasing trend of pitting corrosion potential became slower with Mn addition from 3.6 to 8.1 wt.%. The pitting corrosion resistance was lowered by increasing solution temperature due to more weakened repassivation ferrite phase formation.  相似文献   

10.
The present investigation is aimed to understanding the influence of the morphologies and quantity of ferrite which was obtained by different thermomechanical controlled processes (TMCPs) on microstructure, mechanical properties and three-body impact abrasive wear behavior in a 0.27 wt% C low alloy dual phase steel. The results indicate that acicular ferrite which was obtained by controlled rolling at the low temperature with laminar cooling was partially retained after intercritical heat treatment, and leading to much better mechanical properties and abrasion resistance than in the case of polygonal ferrite. Little retained finer acicular ferrite in dual phase steel deflects the propagation of cracks and increases the impact toughness and abrasive wear resistance.  相似文献   

11.
The compressive deformation behaviors of a C–Mn steel (0.36C–1.42Mn) and two Nb microalloyed steels (0.35C–1.41Mn–0.044Nb and 0.055C–1.42Mn–0.036Nb) were investigated at the temperatures from 900 °C to 1100 °C and strain rates from 0.005 s−1 to 10 s−1 on Gleeble-1500 thermo-mechanical simulator. It was found that the flow stress of the C–Mn steel is the lowest among the experimental steels, indicating that Nb microalloying in HSLA steels can effectively increase the hot deformation flow stress, and the 0.055C–1.42Mn–0.036Nb steel has a higher flow stress than that of the 0.35C–1.41Mn–0.044Nb steel, indicating that C addition generates a softening effect. The flow stress constitutive equations of hot deformation were developed for the experimental steels, the activation energy Q about 360 kJ/mol for the 0.055C–1.42Mn–0.036Nb steel was higher than that for the 0.35C–1.41Mn–0.044Nb steel (347 kJ/mol) and the C–Mn steel (278 kJ/mol). Characteristic points of flow stress for the three steels were analyzed. The results showed that Nb addition can effectively increase the peak strain and the steady state strain of steels, thus delay distinctly the occurrence of dynamic recrystallization, while C addition can reduce the peak strain and the steady state strain of Nb microalloyed steels, thus promote the occurrence of dynamic recrystallization.  相似文献   

12.
The applicability of quenching–partitioning–tempering (Q–P–T) process to an ultrahigh carbon steel (UHCS) has been investigated by means of optical microscopy (OM), scanning electronic microscopy (SEM) combined with energy-dispersive spectrometry (EDS), X-ray diffraction (XRD) and mechanical property tests. The molten steel was modified with a multi-component modifier-rare earth and a low melting point alloy (Al–Bi–Sb) before casting into iron molds. Observations showed that the carbide exists as partly isolated and fine blocky structure in as-cast microstructure, indicating good effect of modification. After the Q–P–T treatment, carbon was partitioned into austenite from martensite, creating a mixture of carbon-depleted martensite, carbon-enriched retained austenite and fine carbides. This kind of microstructure leads to a much higher impact toughness, 32 J/cm2, in comparison with the value, i.e., no more than 20 J/cm2, of the conventional quenching and tempering (Q–T) treatment at the same hardness level. Furthermore, wear-resisting property of the steel has also been investigated. It showed that the Q–P–T treated steel has better abrasive wear resistance, about 18% increased, compared with the Q–T treated alloy under high load conditions.  相似文献   

13.
2 mm thick Fe–18.4Cr–15.8Mn–2.1Mo–0.66N high nitrogen austenite stainless steel plate was successfully joined by friction stir welding (FSW) at 800 rpm and 100 mm/min. FSW did not result in the loss of nitrogen in the nugget zone. The arc-shaped band structure, consisting of a small amount of discontinuous ferrite aligning in the bands and fine austenite grains, was a prominent microstructure feature in the nugget zone. The discontinuous ferrite resulted from newly formed ferrite during welding and the remained ferrite, whereas the fine austenite grains were formed due to dynamic recrystallization of the initial austenite during FSW. The fine dynamically recrystallized grains in the nugget zone significantly increased the hardness compared to that of the base material. The strength of the joint was similar to that of the base material, with the joint failing in the base material zone.  相似文献   

14.
Tempering approach is designed for better understanding the effects of heat treatment induced by production process when manufacturing on the transformation-induced plasticity steels containing 1.0 wt.% Al. Specific attention is placed on the roles of tempering temperature and the holding time on the decomposition of retained austenite and the redistribution of alloying elements. Using transmission electron microscopy, we found the retained austenite was decomposed into ε-carbide and ferrite in the steels tempered at 300 °C for 9 h. An increase in the temperature of 400 °C and the holding time over 3 h accelerate the nucleation kinetics of cementite formation, leading to the deteriorated thermal stability of austenite. In addition, atom probe tomography studies confirmed the partitioning tendency of alloying elements across the ferrite/cementite interfaces as well as the compositional spikes of Mn at the interfaces during tempering over 400 °C for 9 h.  相似文献   

15.
The aim of the present study is to characterize mainly fracture toughness as well as the other mechanical properties of austempered ductile iron produced using both single-step and two-step austempering processes. The effect of alloying with Ni and Mo has been investigated. Austempering heat treatment was conducted at temperatures between 260 °C and 390 °C. Plane strain fracture toughness was evaluated for each material and heat treatment condition. It was found that two-step austempering process resulted in improving the fracture toughness of the material, while maintaining reasonable levels of strength. Alloyed samples showed higher fracture toughness than un-alloyed ones.  相似文献   

16.
The effect of microstructure on the spalling damage in a heavy-haul 20Mn2SiCrMo bainitic wing rail was investigated. The results show that spalling damage is strongly correlated to the detailed microstructure factors which contribute to the crack propagation resistance at different levels. It is demonstrated that comparing with blocky martensite/austenite (M/A) constituents, film-like M/A constituents have better performance to retard crack propagation. Moreover, the type and proportion of M/A constituents are affected by the isothermal holding temperature during heat treatment, where typical blocky M/A constituents are found in the temperature range from 360 °C to 400 °C.  相似文献   

17.
Nanostructured bainite and dispersed carbide particles were formed in Si–Mo-alloyed high-C–Cr bearing steels by low-temperature austempering after partial austenitizing in the intercritical gamma + carbide region. Comparing with conventional quenched and tempered high-C–Cr bearing steel, the impact toughness is remarkably enhanced; the hardness is still adequate for the bearings even though it is slightly decreased.  相似文献   

18.
采用双相区再加热-淬火-碳配分(IQP)工艺,研究初始组织为铁素体+珠光体的IQP-Ⅰ多相钢和初始组织为马氏体的IQP-Ⅱ多相钢的组织形貌、残留奥氏体及力学性能。结果表明:初始组织为铁素体+珠光体的IQP-Ⅰ多相钢室温组织中,铁素体和马氏体基本呈块状分布,块状残留奥氏体存在于铁素体与马氏体界面处,薄膜状只存在于马氏体内的板条之间,且残留奥氏体含量较少,TRIP效应不明显,其抗拉强度为957 MPa,伸长率只有20%,强塑积为19905.6MPa·%。初始组织为马氏体的IQP-Ⅱ多相钢中铁素体和马氏体大多呈灰黑色的板条状或针状,且细小的针状马氏体均匀地分布在铁素体基体上,残留奥氏体只以薄膜状平行分布在铁素体基体上,体积分数达到了13.2%,且具有较高的稳定性,TRIP效应较明显,强塑积达到21560MPa·%,可以获得强度和塑性的良好结合。  相似文献   

19.
Damages on shear cutting blades were analyzed after 50,000 strokes of trimming on an ultra high-strength steel sheet. Traditional D2 alloy and an advanced one (Cr08H) based on the composition of 1C-8Cr were quenched from 1030 °C, tempered at 180 °C and submitted to the shear cutting test. Cr08H had lower hardness, a smaller volume fraction of M7C3 carbides while it contained a larger volume fraction of retained austenite. And these resulted in more scratches and rounded edges because of degraded resistance to wear and local plastic deformation. In spite of higher impact toughness, Cr08H exhibited inferior resistance to chipping which was the consequence of localized brittle fracture. It could be concluded that this was caused by more transformation of austenite as well as by insufficiently hardened matrix, both of which were attributed to inappropriate conditions of the heat treatment.  相似文献   

20.
Nanometer-scale particles (Mn–C clusters) were analyzed quantitatively using small-angle neutron scattering in 18Mn–0.6C (wt.%) austenite high-manganese steel. The size, number, and volume fraction of the particles were determined as a function of strain (0, 5, 15, 30, 45, 50%) at different temperatures (25 and 100 °C). The diameter of the cluster ranges from 2 to 14 nm in the matrix. The total volume fraction of the cluster significantly increases from 2.7 × 10 6 to 8.7 × 10 6 as the strain increases. Such clustering phenomenon is correlated to the serration behavior under loading in high-manganese steels.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号