首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cold metal transfer (CMT) welding has been successfully used to weld dissimilar metals widely. However, a few investigations were carried out on the lap welding of commercially pure titanium TA2 to pure copper T2 with ERCuNiAl copper wire by CMT technique. In this paper, the affected mechanism of lapped location between the two metals on the microstructure and tensile shear strength of joints was revealed. The results indicated that satisfactory lapped joints between commercially pure titanium TA2 and pure copper T2 could be achieved by CMT welding method. A layer of intermetallic compounds (IMCs), i.e. Ti2Cu, TiCu and AlCu2Ti presented in titanium-weld interface, and the weld metal was composed of α-Cu solid solution and Ti–Cu–Al–Ni–Fe multi-phase. The two joints had almost same tensile shear strength, 192.5–197.5 N/mm, and fractured in the heat affected zone (HAZ) of Cu with plastic fracture mode during tensile shear tests.  相似文献   

2.
Heterogeneous interfacial reactions were easily found along the Ti/Al interface due to high temperature gradient during laser welding–brazing of Ti/Al dissimilar alloys. To improve the nonhomogeneity, relative uniform energy distribution of laser beam and appropriate groove were attempted. The effects of these attempts on the nonhomogeneity of interfacial reactions were investigated by finite element method (FEM) numerical simulation and experimental validation. The results indicate that the V-shaped groove can make the interface roughly parallel to the isotherm of the temperature field. Moreover, the rectangular spot laser can further improve homogenization of the interfacial reaction along the interface in comparison with circular spot laser. Tensile test results show that the combination of rectangular spot laser welding–brazing and V-shaped groove can effectively control the fracture of Ti/Al joints in the seam in a wide processing parameters window, and the average tensile strength reaches 278 MPa.  相似文献   

3.
Copper/carbon nanofibre composites containing titanium varying from 0.3 wt.% to 5 wt.% were made, and their thermal conductivities measured using the laser flash technique. The measured thermal conductivities were much lower than predicted. The difference between measured and predicted values has often been attributed to limited heat flow across the interface. A study has been made of the composite microstructure using X-ray diffraction, transmission electron microscopy and Raman spectroscopy. It is shown in these materials, that the low composite thermal conductivity arises primarily because the highly graphitic carbon nanofibre structure transforms into amorphous carbon during the fabrication process.  相似文献   

4.
The densification, workability and strain hardening behaviour of sintered copper and Cu–7.5%TiC powder metallurgy (P/M) composite preforms during cold upsetting were investigated by the constitutive model using the experimental data. Cold upsetting of copper and Cu–7.5% TiC composite preforms having different aspect ratios were carried out and the formability behaviour of the preforms under triaxial stress state was determined. The mechanisms most likely involved in the constitutive model, namely, densification and strain hardening were studied. The effects of aspect ratio and addition of titanium carbide to copper on the formability behaviour and various constants involved in the constitutive model, namely, instantaneous density coefficient, instantaneous strain hardening index, instantaneous strain rate sensitivity and instantaneous strength coefficient were discussed in detail.  相似文献   

5.
Magnesium alloys are lap-joined to galvanised and bare steel sheets by a cold metal transfer method. The weld appearance, cross-section, tensile strength and fracture behaviour of these joints are characterised by scanning electron microscopy, tensile tests and energy-dispersive spectroscopy. The joints were found to have good weld appearance and satisfactory tensile strength. The spreadability and wettability of the Mg alloy–galvanised steel joint are superior to those of the Mg alloy–bare steel joint, but the tensile strength is lower. In particular, the presence of Zn on the galvanised steel sheet improves wettability but decreases tensile strength. Aluminium has a high affinity for Fe, and the thinner layer of Fe–Al improves the mechanical properties of the Mg alloy–bare steel joint.  相似文献   

6.
In this paper the fatigue properties of through-the-thickness reinforced joints are studied in detail. Unreinforced specimens, specimens reinforced with cold metal transfer welded titanium and steel pins and specimens reinforced with titanium z-pins are investigated. Besides classical S–N diagrams, hysteresis curves and stiffness based approaches are applied to improve the understanding of the mechanical behaviour of the joints in the progress of their fatigue life. Furthermore full field strain analysis gives information about damage initiation and growth in the joint section.  相似文献   

7.
In this article, a series of Sn–xZn solders are designed for joining Mg/Al dissimilar metals by low temperature brazing. The effect of Zn content in Sn–Zn solders on microstructure evolution and mechanical properties of the different brazed joints are investigated. The experimental results indicate that Sn–30Zn alloy is identified as the optimized solder. Al–Sn–Zn solid solutions form and disperse in the brazing zone of the Mg/Sn–30Zn/Al brazed joint, decreasing the risk of embrittlement of the brazed joint. The average shear strength of Mg/Sn–30Zn/Al brazed joint can reach 70.73 MPa. The joint fractures in the coarse blocky Mg2Sn intermetallic phases in the center of the brazing zone.  相似文献   

8.
Abstract

The effect of sulphur on the microstructure and properties of Ag45–Cu30–Zn25 brazing filler metal was investigated. Under the given experimental conditions, the sulphuration products mainly consisted of CuS, ZnS, Ag2S, Cu2S and Ag3CuS2. These sulphides not only distributed on the surface but also diffused into the interior of the filler metal and cut apart the matrix thereby significantly damaging the tensile strength of the filler metal from 658 to 283 MPa. The corresponding fracture characterisation turned from ductile fracture to brittle fracture. The sulphides existed as solid particles, which hinder the spreading of the liquid filler metal and the spreading area dramatically decreased from 317?09 to 18?55 mm2, which indicates that the filler metal rarely wets the base metal.  相似文献   

9.
Abstract

Stainless steel AISI type 304 and electrolytic cold rolled copper were joined by diffusion bonding at temperatures ranging from 650 to 950°C, for times from 5 to 45 min, and at pressures from 2 to 12 MPa. After bonding the microstructure of the interface was investigated, including the grain size, and shear and tensile strengths of the bonded specimens were determined. From the results, it was seen that the bond shear strength was dependent on interface grain boundary migration and on grain growth during the bonding process. In addition, attempts were made to find a relationship between grain size and shear strength in the bonding area. Taking into account the results of shear testing and microstructural observation, for a sound bond, optimum bonding conditions were obtained at temperatures of 800–850°C for 15–20 min at 4–6.5 MPa. The fracture behaviour of the diffusion bonded joint was investigated by means of shear and tensile testing under different bonding conditions. It was found that both shear and tensile strengths of the bonds were sensitive to the bonding conditions, and the intermetallic phases did not affect these parameters. Furthermore, the value of shear strength of the bond surface determined by shear testing was higher than the shear strength of the fracture surface determined by tensile testing.  相似文献   

10.
A metal–metal bonding technique is described that uses nanoparticles composed of silver and copper. Colloid solutions of nanoparticles with an Ag content of 0–100?mol% were prepared by simultaneous reduction of Ag+ and Cu2+ using hydrazine with polyvinylpyrrolidone and citric acid as stabilisers. The nanoparticles ranged in size from 34 to 149?nm depending on the Ag content. Copper discs were strongly bonded at 400°C for 5?min under 1.2?MPa pressure in hydrogen gas; the maximum shear strength was as high as 23.9?MPa. The dependence of shear strength on the Ag content was explained by a mismatch between the d-spacings of Cu metal and Ag metal.  相似文献   

11.
Butt joining of a titanium alloy to an aluminum alloy by gas tungsten arc welding–brazing using an Al-Si eutectic filler wire without flux is investigated. The butt joints have dual characteristics, being a welding on the aluminum side and a brazing on the titanium side. The thickness of the reaction layer varies with position in the titanium alloy interfacial area of the joint, ranging from 2 to 5 μm. At the upper part of interfacial area, the reaction layer includes only the rod-like TiAl3 phase with 10 at.% dissolved Si. At the bottom of interfacial area, the reaction layer consists of the needle-like τ1 phases (Ti7Al5Si12) and the block-like TiAl3 phase. Hardness of the reaction layer near the welded seam/Ti alloy interface was as much as 400–500 HV. The highest tensile joint strength observed was 158 MPa. Tensile joint failure was by cracks initiating from the reaction layer at the bottom of the joint propagating into the welded seam at the upper part of the joint.  相似文献   

12.
Titanium (Ti) metal was treated with water or HCl solutions after 5 M NaOH solution treatment and then subjected to heat treatment at 600°C. The apatite-forming abilities of the treated Ti metals were examined in simulated body fluid. The apatite-forming ability of the Ti metal subjected to NaOH, water and heat treatment was lower than that of just NaOH and heat treatments. Ti metals subjected to NaOH, HCl and heat treatment showed apatite-forming abilities, which increased with increasing HCl concentrations up to the same level as that of NaOH- and heat-treated Ti metal. The former did not show a decrease in its apatite-forming ability, even in a humid environment for a long period, whereas the latter decreased its ability. The increase in the apatite-forming ability with increasing HCl concentrations suggests a different mechanism of apatite formation from that previously proposed.  相似文献   

13.
The microstructure of fibre–foil Ti–6Al–4V (composition in weight per cent) and IMI 834 matrix metal matrix composites (MMCs), and corresponding foil-bonded alloys, are investigated in relation to fabrication parameters. Higher fabrication temperatures are required in IMI 834 MMCs, which results in a thicker interfacial reaction layer than in Ti–6Al–4V MMCs. The matrix microstructure in all materials is predominantly with intergranular , as a result of the slow cooling rate. MMCs reinforced with SM1240 fibres exhibit boron precipitates along foil bond lines, owing to diffusion during consolidation. Fabrication using fibre mats with 7.1 fibres per millimeter (FPM) results in an excellent microstructure in (Ti–6Al–4V)–SM1240. The larger diameter of the SM1140+fibre compared with SM1240 means that (Ti–6Al–4V)–SM1140+requires FPM significantly below 7.1 in order to produce acceptable microstructural quality. The higher residual stresses in IMI 834 MMCs result in cracking of the matrix and fibre–matrix interfacial region when a FPM of 7.1 is used. Acceptable microstructural quality is observed in IMI 834 MMCs when the FPM of fibre mats is reduced to 6.3. Interfibre cracking in IMI 834–SM1140+is enhanced by a higher matrix microhardness than the other materials. This high hardness may be caused by a high matrix carbon content.  相似文献   

14.
Laser welding of AA1100-16 vol.% B4C metal–matrix composites was explored in the study. It was found that most B4C particles were decomposed and that needle-like AlB2 and Al3BC phases were substantially formed during the welding process without filler. Consequently, a joint efficiency of 63% (UTS) was obtained. The addition of Ti with 150 μm thick foil increased the joint efficiency to 75% due to the decrease of needle-like phase formations. On the other hand, the addition of Ti with filler wire did not show significant tensile property improvement due to the Ti segregation and microstructure inhomogeneity in the weld zone. The fracture surfaces of laser welded joints were investigated to understand the fracture mechanisms.  相似文献   

15.
Dissimilar metals tungsten inert gas butt welding–brazing between 5A06 aluminum alloy and SUS321 stainless steel was carried out using Al–Cu6 filler metal and non-corrosive flux. A thin intermetallic compound layer has formed in welded seam/steel interface and the average thickness of the whole layer is 3–5 μm, which is less than the limited value of 10 μm. The intermetallic compound layer consists of Fe4Al13 phase and at the bottom Sn deposits in the molten flux layer and diffuses into steel matrix to form the grain boundary filter layer, which is the weak zone of the butt joint. The average microhardness of the layer is 644.7 HV, compared with 104.5 HV in welded seam and 200 HV in steel matrix. The tensile strength of butt joint reaches 172.5 MPa and the crack initiates from the IMC layer at the bottom of the joint and derives into welded seam at the upper part of the joint. The present joint in this study has higher level than those with coated layer.  相似文献   

16.
Rapidly solidified Al–8.5Si–25Cu–xY (wt-%, x?=?0, 0.05, 0.1, 0.2, 0.3, 0.4, and 0.5) foils were used as filler metal to braze Al matrix composites with high SiC particle content (SiCp/Al-MMCs), and the filler presented fine microstructure and good wettability on the composites. The joint shear strength first increased, then decreased and a sound joint with a maximum shear strength of 135.32?MPa was achieved using Al–8.5Si–25Cu–0.3Y as the filler metal. After Y exceeded 0.3%, a needle-like intermetallic compound, Al3Y, was found in the brazing seam, resulting in a dramatic decline in the shear strength of the brazed joints. In this research, the Al–8.5Si–25Cu–0.3Y filler metal foil was found to be suitable for the brazing of SiCp/Al-MMCs with high SiC particle content.  相似文献   

17.
The reliability and integrity of diamond cutting tools depend on the properties of diamond–metal joints as created by a brazing process. Block-shaped monocrystalline diamonds were brazed onto a steel substrate (X2CrNiMo 18-14-3), using silver–copper based Cusil-ABA™ (Ag–35wt%Cu–1.75wt%Ti) filler alloy. The experimental procedure includes a thorough microstructural investigation of the filler alloy, the determination of the induced residual stresses by Raman spectroscopy as well as the joint’s shear strength utilizing a special shear device. The brazing processes were carried out at 850, 880 and 910 °C for dwell durations of 10 and 30 min, respectively. At the steel interface two interlayers develop. The layers grow with extended dwell duration and higher brazing temperature. The residual stresses only slightly depend on the brazing parameters and exhibit a maximum value of −400 MPa. Unlike the residual stresses, the shear strength strongly depends on the brazing parameters and thus on the microstructure. Three failure modes could be identified; a ductile fracture in the filler alloy, a brittle fracture in the interlayers and a partly shattering of the diamond.  相似文献   

18.
Abstract

The present investigation concerns effect of prestrain on the precipitation of Cu during aging of directly air cooled Ti–B microalloyed steels. The differential scanning calorimetry studies allow to identify that precipitation of Cu is most prominent between 350 and 500°C. Prestraining of the directly air cooled samples has broadened the temperature range for Cu precipitation with perceptible overlapping with the peaks due to other low temperature reactions like recovery and/or tempering. Fifty per cent prestraining of 1·5 wt-%Cu added steel before aging triggered the precipitation reaction at a temperature ~320°C with pronounced decrease in the activation energy values from 172 to 116 kJ mol?1. Microstructural changes due to prestraining are evident in the micrographs obtained from transmission electron microscope as deformed ferrite laths and formation of cell structures therein. While 15–50% prestraining has increased the strength without much deterioration in ductility; aging of the prestrained samples has improved the strength and ductility concomitantly.  相似文献   

19.
The induction brazing of 316LN stainless steel using Ag–Cu–Zn filler metal containing various content of Ca was carried out to investigate the influence of impurity element Ca on the microstructure and mechanical properties of the brazed joint. The results showed that Ca additions caused the coarser of the grains and their irregular distribution. Increase of the Ca content resulted in the formations of brittle intermetallic compounds (IMCs) CaCu which perhaps lead to the formations of voids. All of the calcium-containing brazed joints performed better in microhardness than calcium-free ones and brazed joints containing 0.003 wt.% Ca showed the highest microhardness of 203HV. While the tensile strength decreased with the increment of Ca, from 460 MPa to 400 MPa. The combination effects of coarser grains, brittle IMCs and voids conduced to the reduction of tensile strength and microhardness of the brazed joints.  相似文献   

20.
In this study, a copper–titanium–nitrogen multiphase coating was fabricated on the surface of C17200 copper–beryllium alloy by deposition and plasma nitriding in order to improve the surface mechanical properties. The phase composition, microstructure and microhardness profiles of the as-obtained multiphase coating were characterized by X-ray diffractometer (XRD), scanning electron microscopy (SEM) and Vickers microhardness measurements, respectively. Pin-on-disk tribometer and SEM equipped with energy dispersive spectrometer (EDS) were applied to measure tribological properties and analyze wear mechanisms involved. The XRD results show that the phase composition changes with nitriding temperature. The Ti2N layer is replaced by a Cu–Ti intermetallic layer when the nitriding temperature is higher than 700 °C. The Cu/Ti ratio in the multiphase coatings remains at a constant value of 2:1 due to the incorporation of nitrogen atoms. The surface hardness achieves a maximum value of 983 HV at 650 °C, and decreases as the nitriding temperature increases. The increased hardness corresponds to the improved wear resistance and decreased frictional coefficient and the surface hardness is proportional to the wear rates. The wear mechanism depends on the phase composition of the multiphase coatings. With the nitriding temperature increasing, the oxidative wear mechanism changes to adhesive and abrasive mode.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号