首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.
Investigations on fatigue crack growth retardation due to single tensile and periodic multiple over load in strength undermatched laser beam welded 3.2 mm thick aerospace grade aluminium alloy 2139-T8 sheets are conducted. The effect of overload on the fatigue crack propagation behaviours of the homogenous base metal and welded panels (200 mm wide, centre cracked) was compared using experimental and FE analysis methods. The effective crack tip plasticity has been determined in homogeneous M(T) specimens using Irwin’s method and in both homogeneous and laser welded specimen by calculating crack tip plastic strain using FE analysis for single tensile overload. The crack retardation due to the overload in welded specimens is described by the Wheeler Model. The crack tip plastic zone size in the welded specimen was determined by FE analysis using maximum plastic zone extension at the mid sheet thickness. The results show that the Wheeler Model can be implemented to the highly heterogeneous undermatched weld to describe the crack retardation in fatigue following single tensile overload. Fatigue crack growth retardation due to single overload is found to be larger than the base metal. However, after periodic multiple overload, shorter crack retardation has occurred for undermatched welds than the base metal.  相似文献   

2.
A numerical investigation of the influence of specimen size on creep crack growth in cross‐weld CT specimens with material properties of 2.25Cr1Mo at 550 °C is performed. A three‐dimensional large strain and large displacement finite element study is carried out, where the material properties and specimen size are varied under constant load for a total of eight different configurations. The load level is chosen such that the stress intensity factor becomes 20 MPa √m regardless of specimen size. The creep crack growth rate is calculated using a creep ductility‐based damage model, in which the creep strain rate ahead of the crack tip perpendicular to the crack plane is integrated taking the degree of constraint into account. Although the constraint ahead of the crack tip is higher for the larger specimens, the results show that the creep crack growth (CCG) rate is higher for the smaller specimens than for the larger ones. This is due to much higher creep strain rates ahead of the crack tip for the smaller specimens. If, on the other hand, the CCG rate is evaluated under a constant C * condition, the creep crack growth rate is found to be higher for the larger specimens, except when the crack is located in a HAZ embedded in a material with a lower minimum creep strain rate; then, the creep crack growth rate is predicted to be higher for the smaller specimen. In view of these results, it is obvious that the size effect needs to be considered in assessments of defected welded components using results from CCG testing of cross‐weld CT specimens.  相似文献   

3.
Simultaneous effects of thickness and texture on the anisotropy of mechanical properties and fracture behaviors of commercially pure titanium thin sheets were studied. The activation of different deformation systems, due to the split distribution of basal texture, led to mechanical properties anisotropy. The crack initiation and propagation energies, when the loading direction was parallel to the initial rolling direction, decreased with increasing thickness ranges from 0.25 to 1 mm. The changes of size, shape and distribution of dimples with increasing thickness confirmed the restriction of deformation systems and the development of triaxial stress state and plane-strain condition at the notch tip. However, in transverse-directed specimens, the energy release rate increased with increasing specimen thickness up to 0.75 mm and then decreased. The fractography of these specimens explained the simultaneous effects of thickness and texture on structural stability and high accommodated plastic deformation at the notch tip.  相似文献   

4.
The effects of side‐groove depth on creep crack‐tip constraint and creep crack growth (CCG) rate in C(T) specimens have been quantitatively studied. The results indicate that with increasing side‐groove depth, the constraint level and CCG rate increase and constraint distribution along crack front (specimen thickness) becomes more uniform. The constraint and CCG rate of thinner specimen are more sensitive to side‐groove depth. Two new creep constraint parameters (namely R* and Ac) both can quantify constraint levels of the specimens with and without side‐grooves, and the quantitative correlations of CCG rate with constraint have been established. The mechanism of the side‐groove depth effect on the CCG rate has also been analyzed.  相似文献   

5.
A methodology has been developed which is capable of predicting creep/fatigue crack growth rates at ambient and elevated temperatures in Ti 6246. Predictions are based on finite element analysis and strain-control testing of plain specimens. The prediction of fatigue crack growth rates for a given crack configuration and cyclic plastic zone size is assumed to be consistent with the processes leading to crack initiation in plain specimens. Such an assumption leads to the conclusion that a similar stress–strain profile will lead to similar lives in both the plain specimens and in the cyclic plastic zone ahead of a crack in a notched specimen. Therefore, fatigue crack growth results from the accumulation of damage in the cyclic plastic zone ahead of the crack tip. Once the damage accumulated in this element of material becomes critical, the crack propagates through the damaged region into a new region of virgin material where the process of damage accumulation begins again. The creep/fatigue model is described and assessed with reference to measured fatigue crack growth rate data for Ti 6246 at 20 °C and 500 °C.  相似文献   

6.
In this paper creep crack growth behaviour of P92 welds at 923 K are presented. Creep crack growth behaviour for P92 welds are discussed with C* parameter. Creep crack growth behaviour of P92 welds has been compared with that of P91 welds with C* parameter. NSW and NSW-MOD model were compared with the experimental creep crack growth data. Plane strain NSW model significantly overestimates the crack growth rate, and plane stress NSW model underestimates it. Whilst, NSW-MOD model for plane stress and plane strain conditions gives lower and upper bound of the experimental data, respectively.FE analysis of creep crack growth has been conducted. Constrain effect for welded joints has been examined with C* line integrals of C(T) specimens. As a result, constant C* value using the material data of welded joint gives 10 times lower than that of only HAZ property. Whilst, the predicted CCG rates for welded joint are 10 times higher than those for only HAZ properties. Compared with predicted CCG rate from FE analysis and the experimental CCG rate, it can be suggested that creep crack growth tests for lower load level or for large specimen should be conducted, otherwise the experimental data should give unconservative estimation for components operated in long years.  相似文献   

7.
The present investigation is aimed to evaluate fatigue crack growth parameters of gas tungsten arc, electron beam and laser beam welded Ti–6Al–4V titanium alloy for assessing the remaining service lives of existing structure by fracture mechanics approach. Center cracked tensile specimens were tested using a 100 kN servo hydraulic controlled fatigue testing machine under constant amplitude uniaxial tensile load. Crack growth curves were plotted and crack growth parameters (exponent and intercept) were evaluated. Fatigue crack growth behavior of welds was correlated with mechanical properties and microstructural characteristics of welds. Of the three joints, the joint fabricated by laser beam welding exhibited higher fatigue crack growth resistance due to the presence of fine lamellar microstructure in the weld metal.  相似文献   

8.
The influences of stress and temperature on creep deformation behavior and the creep crack growth rates of the super α2 Ti3Al alloy were investigated with respect to its safe application at high temperatures. In a temperature range of 1033–1093 K at low applied stress levels, the stress exponent was equal to 1.5. At an intermediate stress range (10?3 < σ/E < 3 × 10?3), a stress exponent of 3.3 was observed. As the applied stress was increased, the stress exponent changed from 3.3 to 4.4. The high temperature crack growth rate of the Ti3Al alloy can be correlated with stress intensity factor K rather than C1 at 1033 K due to environmental embrittlement.  相似文献   

9.
A creep–fatigue test with a structural specimen made of Mod. 9Cr–1Mo steel and 316L stainless steel has been carried out and the test results were compared with those of the evaluations by the high temperature design codes of ASME subsection NH and RCC-MR to quantify the conservatism. A specimen with a diameter of 500 mm, height of 440 mm and thickness of 6.3 mm was subjected to creep–fatigue loads with two hours of a hold time at 600 °C and a primary nominal stress of 30 MPa. The creep–fatigue behaviours of the dissimilar metal welds as well as the similar metal welds were investigated and the results of the test were compared with the evaluation results. Bimetallic (direct) transition metal joint and trimetallic transition metal joint for a dissimilar metal weld were employed for a specimen, and their behaviours under a creep–fatigue load were compared. The conservatism of the design codes on the creep–fatigue evaluation at the welded joints as well as at the base metal with an emphasis on Mod.9Cr–1Mo steel are highlighted through comparisons with the results from the observation and the evaluation.  相似文献   

10.
Being restricted by the relative larger size requirement, traditional and standard fracture specimens are not applicable for the estimation of fatigue crack growth behavior of some very finite-sized components and precious materials. This study develops a small-sized C-shaped inside edge-notched tension (CIET) specimen which has an advantage of specimen minimization and a wide range of adaptability. A systemic compliance technique for estimating fatigue crack growth behavior of CIET specimen has been successfully constructed and experimentally verified. Groups of fatigue crack propagation rate tests of both CIET specimen and CT specimen for 5083-H112 aluminum alloy were carried out. The resulted da/dN  ΔK curves are heavy affected by specimen configuration and load ratio, and the difference between these da/dN  ΔK curves has been successfully removed by introducing the correction of plasticity-induced crack closure effect. Consequently, the feasibility of CIET specimen for estimating fatigue crack propagation behavior for small-sized components and precious materials has been evidently confirmed.  相似文献   

11.
Microstructure irreversibility plays a major role in the gigacycle fatigue crack initiation. Surface Persistent Slip Bands (PSB) formation on Copper and its alloy was well studied by Mughrabi et al. as typical fatigue crack nucleation in the very high cycle fatigue regime. In the present paper, Armco iron sheet specimens (1 mm thickness) were tested under ultrasonic frequency fatigue loading in tension–compression (R = −1). The test on the thin sheets has required a new design of specimen and new attachment of specimen. After gigacycle fatigue testing, the surface appearance was observed by optical and Scanning Electron Microscope (SEM). Below about 88 MPa stress, there is no PSBs even after fatigue cycle up to 5 × 109. With a sufficient stress (above 88 MPa), PSBs in the ferrite grain was observed by optic microscope after 108 cycles loading. Investigation with the SEM shows that the PSB can appear in the body-centered cubic crystal in the gigacycle fatigue regime. Because of the grain boundary, however, the local PSB did not continually progress to the grain beside even after 109 cycles when the stress remained at the low level.  相似文献   

12.
Creep crack growth behavior is very sensitive to the materials’ micro-structures such as the heat affected zone of a weld joint. This is a main issue to be clarified for 9%Cr ferritic heat resistant steel for their application in structural components. In this paper, high temperature creep crack growth tests were conducted on CT specimens with cracks in the heat affected zone of weld joints of W added 9%Cr ferritic heat resistant steel, ASME grade P92. The creep crack growth behavior in the heat affected zone of welded joint was investigated using the Q concept following which the algorithm of predicting the life of creep crack growth has been proposed. Furthermore, three-dimensional elastic-plastic creep FEM analyses were conducted and the effect of stress multiaxiality of welded joint on creep crack growth rate was discussed as compared with that of base metal.  相似文献   

13.
In the paper, the results of crack tip opening displacement (CTOD) and crack opening displacement (COD) in place of crack initiation as well as the fatigue crack growth rate in higher strength steel are presented. The investigation were carried out on flat specimens with central notch under constant amplitude tensile fatigue loading at stress ratio R = 0.2 and different value of the stress σmax. The test results showed that with growth of crack length l grew values of the CTOD and COD. In the work, it was proposed calculation of the CTOD value on basis various dependence of plastic zone radius on crack tip.  相似文献   

14.
Fatigue fracture behavior of the 30 mm thick Q460C-Z steel cruciform welded joint with groove was investigated. The fatigue test results indicated that fatigue strength of 30 mm thick Q460C-Z steel cruciform welded joint with groove can reach fatigue level of 80 MPa (FAT80). Fatigue crack source of the failure specimen initiated from weld toe. Meanwhile, the microcrack was also found in the fusion zones of the fatigue failure specimen, which was caused by weld quality and weld metal integrity resulting from the multi-pass welds. Two-dimensional map of the longitudinal residual stress of 30 mm thick Q460C-Z steel cruciform welded joint with groove was obtained by using the contour method. The stress nephogram of Two-dimensional map indicated that longitudinal residual stress in the welding center is the largest.  相似文献   

15.
The driving force for creep crack growth is dominated by local elastic-plastic stress in the creep damage zone around a crack tip, temperature and microstructure. In previous work, C, Ct, load line displacement rate dδ/dt and Q parameters have been proposed as formulations of creep crack growth rate (CCGR). Furthermore, using parameters mentioned above, the construction of the algorithm of predictive law for creep crack growth life is necessary for life assessment procedures. The aim of this paper is to identify the effects of component size, geometry, microstructure, aging and weldment on the embrittling behavior of creep crack growth and incorporate these effects in a predictive law, using the Q parameter. It was found that for specimen size (width and thickness) and of material softening due to aging the values of the activation energy were the same whereas for grain size change and structural brittleness, which affected crack tip multi-axial stress state the values for the activation energy for CCGR differ.  相似文献   

16.
This paper describes the joint properties and their improvement in thin walled circular pipe friction welded joint for an AISI 310S austenitic stainless steel. Pipes were welded with the combination of the same thickness and outer diameter by a continuous drive friction welding machine that has an electromagnetic clutch. Then, when the clutch was released, the relative speed between both specimens instantly decreased to zero. When the joint with a pipe thickness of 1.50 mm was made at a friction pressure of 120 MPa, the joining could be successfully achieved and that had 100% efficiency with the base metal fracture. However, the joining became difficult with decreasing pipe thickness, and it was not successful at a pipe thickness of 0.50 mm. On the other hand, when the joint with a pipe thickness of 0.50 mm was made at a friction pressure of 30 MPa, the joining could be successfully achieved, although that did not have 100% efficiency. Then, when the joint was made under a friction time of 0.6 s, i.e. the friction torque reached just after the initial peak, and a forge pressure of 60 MPa, it had 100% efficiency with the base metal fracture. However, when that was made with high forge pressure such as 120 MPa, the joining could not be achieved because the adjacent region of the weld interface had heavy buckling. To obtain the successful joining and 100% joint efficiency with the base metal fracture for the thin walled circular pipe, the joint should be made with opportune friction welding condition as follows: low friction pressure, a friction time of just after the initial peak of the friction torque, and a forge pressure of double value of a friction pressure.  相似文献   

17.
Several lately proposed modifications or variants of the structural stress or strain concepts, of the notch stress or strain concepts (also termed ‘local stress or strain concepts’) and of the fracture mechanics concepts of fatigue assessment of welded joints are reviewed, whereas the wider context is presented in a recently republished and actualised standard work. The structural stress concepts described first are based on a linearisation of the stress distribution across the plate thickness or along the anticipated crack path and, alternatively, on the structural stress 1 mm in depth below the weld toe. The structural stress is defined and set against design SN curves. A further structural stress concept is presented for welded joints in thin-sheet steels and aluminium alloys. Among the elastic notch stress concepts, the variant with the reference notch radius, ρr = 1 mm, recently verified also for welded joints in aluminium alloys with plate thicknesses t ? 5 mm and the variant with a small-size reference notch radius, ρr = 0.05 mm, applicable to welded joints in thin-sheet materials, are outlined. The elastic–plastic notch strain concept is applied to a spot-welded tensile-shear specimen starting from a small-size keyhole notch at the nugget edge. The novel notch stress intensity factor (NSIF) approach relating to crack initiation and extrapolated to final fracture of seam-welded joints in steels and in aluminium alloys is reviewed. A more recently developed crack propagation approach for spot welds is finally described.  相似文献   

18.
The high cycle and Very-High-Cycle Fatigue (VHCF) properties of a structural steel with smooth and notched specimens were studied by employing a rotary bending machine with frequency of 52.5 Hz. For smooth specimens, VHCF failure did occur at fatigue cycles of 7.1 × 108 with the related SN curve of stepwise tendency. Scanning Electron Microscopy (SEM) was used for the observations of the fracture surfaces. It shows that for smooth specimens the crack origination is surface mode in the failure regime of less than 107 cycles. While at VHCF regime, the material failed from the nonmetallic inclusion lies in the interior of material, leading to the formation of fisheye pattern. The dimensions of crack initiation region were measured and discussed with respect to the number of cycles to failure. The mechanism analysis by means of low temperature fracture technique shows that the nonmetallic inclusion in the interior of specimen tends to debond from surrounding matrix and form a crack. The crack propagates and results to the final failure. The stress intensity factor and fatigue strength were calculated to investigate the crack initiation properties. VHCF study on the notched specimens shows that the obtained SN curve decreases continuously. SEM analysis reveals that multiple crack origins are dominant on specimen surface and that fatigue crack tends to initiate from the surface of the specimen. Based on the fatigue tests and observations, a model of crack initiation was used to describe the transition of fatigue initiation site from subsurface to surface for smooth and notched specimens. The model reveals the influences of load, grain size, inclusion size and surface notch on the crack initiation transition.  相似文献   

19.
The purpose of this study was to evaluate microstructural and mechanical change of DP780 steel after tungsten inert gas (TIG) welding and the influence of notch locations on the fatigue crack growth (FCG) behavior. The tempering of martensite in the sub-critical heat affected zone (HAZ) resulted in a lower hardness (~ 220 HV) compared to the base material (~ 270 HV), failure was found to originate in the soft HAZ during tensile test. The fusion zone (FZ) consisted of martensite and some acicular ferrite. The joint showed a superior tensile strength with a joint efficiency of 94.6%. The crack growth path of HAZ gradually deviated towards BM due to the asymmetrical plastic zone at the crack tip. The FCG rate of the crack transverse to the weld was fluctuant. The Paris model can describe the FCG rate of homogeneous material rather well, but it cannot precisely represent the FCG rate of heterogeneous material. The fatigue fracture surface showed that the stable expanding region was mainly characterized by typical fatigue striations in conjunction with secondary cracks; the rapid expanding region contained quasi-cleavage morphology and dimples. However, ductile fracture mechanism predominated with an increasing stress intensity factor range (ΔK). The final unstable failure fractograph was subtotal dimples.  相似文献   

20.
Fatigue crack initiation and propagation behaviour in subsolvus heat treated turbine disc alloy N18 has been assessed in air and vacuum at 650 and 725 °C under three-point loading. Fatigue crack initiation processes have been evaluated using single edge U-notch specimens under a 1-1-1-1 trapezoidal loading waveform along with interrupted tests at 650 °C to allow intermittent observations of the notch surface. The results show apparent grain boundary (GB) oxidation can occur under an oxygen partial pressure of 10−2–10−3 Pa. Cracks mainly initiate from grain boundaries or γ/γ′ interfaces due to the formation and subsequent cracking of Cr-rich and/or Co-rich oxides, and occasionally initiate from surface pores. Fatigue life in these tests appears to be dominated by this crack initiation process and is significantly reduced by increasing temperature and/or application of an oxidizing environment. Crack growth tests conducted under 1-1-1-1 and 1-20-1-1 loading waveforms indicate that oxidation significantly degrades the crack growth resistance of N18 and is associated with more intergranular fracture surface features. Additional oxidation effects on propagation caused by higher temperature or prolonging dwell time appear limited, whereas a prolonged dwell period seems to instead promote additional creep process, which further enhance crack growth, especially at higher temperature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号